您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 企业财务 > 第十四章静不定结构.
(StaticallyIndeterminateStructure)(StaticallyIndeterminateStructure)第十四章静不定结构(Chapter14StaticallyIndeterminateStructure)§14-3对称及反对称性质的应用(Applicationaboutsymmetricalandantisymmetricalproperties)§14-1静不定结构概述(Instructionaboutstaticallyindeterminatestructure)§14-2用力法解静不定结构(Solvingstaticallyindeterminatestructurebyforcemethod)(StaticallyIndeterminateStructure)一、静不定结构(Staticallyindeterminatestructure)在静不定结构中,超过维持静力学平衡所必须的约束称为多余约束,多余约束相对应的反力称为多余约束反力,多余约束的数目为结构的静不定次数(degreeofstaticallyindeterminate).§14-1静不定结构概述(InstructionaboutStaticallyindeterminatestructure)用静力学平衡方程无法确定全部约束力和内力的结构,统称为静不定结构或系统(staticallyindeterminatestructure),也称为超静定结构或系统.(StaticallyIndeterminateStructure)第三类:在结构外部和内部均存在多余约束,即支反力和内力是静不定的,也称联合静不定结构.二、静不定问题分类(Classificationforstaticallyindeterminate)第一类:仅在结构外部存在多余约束,即支反力是静不定的,可称为外力静不定系统;第二类:仅在结构内部存在多余约束,即内力是静不定的,可称为内力静不定系统;(StaticallyIndeterminateStructure)第一类第二类第三类(StaticallyIndeterminateStructure)四、分析方法(Analyticalmethod)1、力法(forcemethod):以未知力为基本未知量的求解方法;2、位移法(displacementmethod):以未知位移为基本未知量的求解方法.(1)外力超静定次数的判定:根据约束性质确定支反力的个数,根据结构所受力系的类型确定独立平衡方程的个数,二者的差即为结构的超静定次数;(2)内力超静定次数的判定:一个平面封闭框架为三次内力超静定;平面珩架的内力超静定次数等于未知力的个数减去二倍的节点数.三、超静定次数的判定(Determinethedegreeofstaticallyindeterminacy)(StaticallyIndeterminateStructure)判断静不定度与问题所属类型选择与解除多余约束,并用多余力代替其作用,得相当系统计算相当系统在多余约束处的位移,建立用多余未知力与载荷表示的补充方程由补充方程确定多余未知力通过相当系统,计算原结构的应力与位移等求解步骤以多余未知力为基本未知量进行求解的方法-力法§14-2用力法解静不定结构(StaticallyIndeterminateStructure)外静不定问题分析分析图示小曲率杆的支反力与内力,EI为常数。1.问题分析一度外静不定选支座B为多余约束,FBy为多余力变形协调条件为0By(StaticallyIndeterminateStructure)2.位移计算d)()(1π/20RMMEIBysin)(RMFFBy2FFAx)cos1(sin)(FRRFMByEIRFFByBy3)2(0)2(3EIRFFBy3.多余力计算4.支反力与内力分析FFAy2FRMA21(StaticallyIndeterminateStructure)内力静不定问题分析分析图示桁架的内力与qAB,各杆各截面的EA相同1.问题分析一度内力静不定选杆1为多余约束,FN为多余未知力变形协调条件:0'/mm截面m与m’间沿轴线方向的相对线位移为零(StaticallyIndeterminateStructure)2.内力分析61NN'/iiiiiimmAElFF2NN2NN1FFFF,2NN6FF0'/mmFF561.0N得:21N6FFFEAamm2122222N'/211N2N1FF,02122222NFF(StaticallyIndeterminateStructure)61NNiiiiiiABAElFFq0N3N2N1FFF3.转角计算FFFFFF397.0,603.0,853.0N6N5N41.9161NNEAFAElFFiiiiiiABqaFFaF1,2N6N5N4注意:通过相当系统求位移!(P)在杆AB两端加单位力偶(StaticallyIndeterminateStructure)ABlX1(1)去掉多余约束代之约束反力,得基本静定系把B支座作为多余约束X1为多余反力AB悬臂梁为基本静定系例题1如图所示,梁EI为常数,试求支座反力.qAqB(StaticallyIndeterminateStructure)变形协调条件:B点的挠度为(2)利用多余约束处的变形情况写出变形协调条件1X1表示由于X1作用在静定基上时,X1作用B点沿X1方向的位移1F表示荷载F(广义力)作用在静定基上时,X1作用B点沿X1方向的位移.0ΔΔ111FXABlqX1AqB(StaticallyIndeterminateStructure)若用11表示沿X1方向的单位力在其作点引起的X1方向的位移由于X1作用,B点的沿X1方向位移是11的X1倍11111ΔXδX利用上式解出X1ABlqX1AqB(StaticallyIndeterminateStructure)1(3)用莫尔定理求Δ1F2)(2qxxMxxM)(EIqlxxqxEIlF8d)2(1Δ4021ABlqX1AqBABqABxx(StaticallyIndeterminateStructure)1(4)用莫尔定理求11xxM)(xxM)(EIlxxxEIl3d13011ABlqX1AqB1ABABxx(StaticallyIndeterminateStructure)代入0ΔΔ111FXEIqlxxqxEIlF8d)2(1Δ4021EIlxxxEIl3d1301108343EIqlEIl解得qlX831ABlqX1AqB(StaticallyIndeterminateStructure)二、力法正则方程(Generalizedequationsintheforcemethod)上例中以多余力为未知量的变形协调方程可改写成下式X1—多余未知量;变形协调方程的标准形式,即所谓的力法正则方程.11—在基本静定系上,X1取单位值时引起的在X1作用点X1方向的位移;1F—在基本静定系上,由原载荷引起的在X1作用点沿X1方向的位移;0Δ1111FX(StaticallyIndeterminateStructure)X1X2X3这是三次超静定问题对于有多个多余约束反力的静不定系统的正则方程如下:FABFAB(StaticallyIndeterminateStructure)在静定基上,由F,X1,X2,X3单独作用在点引起的水平位移分别记作△1F,△1X1,△1X2,△1X31表示B点的水平位移方向B点的水平位移等于零0ΔΔΔΔ1111321FXXXFABX1X2X3FAB(StaticallyIndeterminateStructure)FABFAB111B1B2B30ΔΔΔΔ1111321FXXX11111ΔXX21212ΔXX31313ΔXX0Δ1313212111FXXX111213FAB(StaticallyIndeterminateStructure)B点的铅垂位移等于零2表示B点的铅垂位移方向0ΔΔΔΔ2222321FXXXFABFABX1X2X3(StaticallyIndeterminateStructure)1B3FABFAB1B22122230ΔΔΔΔ2222321FXXX0Δ2323222121FXXX12121ΔXX22222ΔXX32323ΔXXFAB1B1(StaticallyIndeterminateStructure)0Δ3333232131FXXX0Δ1313212111FXXX0Δ2323222121FXXXjiij)3,2,1,(ji三次超静定系统的正则方程FABFABX1X2X3(StaticallyIndeterminateStructure)正则方程的推广由位移互等定理知:0Δ0Δ0Δ2n21n12222212111212111nFnnnFnnFnnXXXXXXXXXjiij(StaticallyIndeterminateStructure)例题2刚架的两杆抗弯刚度都是EI,解此刚架.FABCDll/2l/2(StaticallyIndeterminateStructure)解:取固定端处的反力偶为多余约束.变形协调条件是:A点的转角等于零.ABCDlFl/2l/2X1ABCDlFl/2l/2(StaticallyIndeterminateStructure)11是在A点作用单位力偶时,在A截面引起的转角.△1F是力F在A截面引起的转角.0Δ1111FXABCDlFl/2l/2ABCDlFl/2l/2X1(StaticallyIndeterminateStructure)BC:AC:(1)求11xlxM1)(xlxM1)(1)(xM1)(xMABCDll/2l/211/l1/lABCDll/2l/211/l1/lxxxx(StaticallyIndeterminateStructure)]d(1)d)([1002211llxxlxEIABCDll/2l/211/l1/lABCDll/2l/211/l1/lxxxx(StaticallyIndeterminateStructure)BC:CD:AD:(2)求△1FxFxM2)(lFxM2)(FxxM)(1)(xM1)(xMxlxM1)(xxABCDll/2l/211/l1/lxxxxFABCDll/2l/2FFF/2F/2(StaticallyIndeterminateStructure)EIFlxFxxFlxlxFxEIl/ll/F2413]d1d12d2[1Δ2200201EIl3411解得FlX321310Δ1111FX代入(StaticallyIndeterminateStructure)MeABCDa/2a/2例题3已知两杆抗弯刚度均为EI。不计剪力和轴力对刚架变形的影响,求支座反力.q=10KN/m,m=50KN·mq(StaticallyIndeterminateStructure)(1)用单位力法求1FBD:DC:CA:0Δ1111FXxxM)(xxM)(axM)(0)(xMe)(MxM2)(2eqxMxM6811d)2(1d)(1Δ42e02e2/e1qaaMxaqaMEIxxMEIaaaFx
本文标题:第十四章静不定结构.
链接地址:https://www.777doc.com/doc-2091091 .html