您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 理学 > 衡水学院《物理化学》第三章热力学第二定律作业及答案
第1页[143-1]卡诺热机在T1=600K的高温热源和T2=300K的低温热源间工作。求:⑴热机效率η;⑵当向环境作功–W=100kJ时,系统从高温热源吸收的热Q1及向低温热源放出的热-Q2。解:5.0600300600121TTTr⑴)(解得:即⑵kJ200100.50111QQQWQ2+Q1=-WQ2+200=100-Q2=100(kJ)[143-2]某地热水的温度为65℃,大气温度为20℃。若分别利用一可逆热机和一不可逆热机从地热水中取出1000J的热量。⑴分别计算两热机对外所做的功,已知不可逆热机是可逆热机效率的80%;⑵分别计算两热机向大气中所放出的热。解:1121QWTTTrr⑴)(解得:即J13310005.12736520-65rr=80%Wr=80%×(-133)=-106.5(J)⑵Q2+Q1=-WQr,2+1000=133Qr,2=-867(J)Qir,2+1000=106.5第2页Qir,2=-893.5(J)[143-3]卡诺热机在T1=900K的高温热源和T2=300K的低温热源间工作。求:⑴热机效率η;⑵当向低温热源放热-Q2=100kJ时,系统从高温热源吸热Q1及对环境所作的功–W。解:6667.0900300900121TTTr⑴)(解得:即⑵kJ3001001.6667011112QQQQQ2+Q1=-W-100+300=-W-W=200(kJ)[143-4]冬季利用热泵从室外0℃的环境吸热,向室内18℃的房间供热。若每分钟用100kJ的功开动热泵,试估算热泵每分钟最多能向室内供热多少?解:从室外吸热Q1,向室内供热Q2,室外温度定为T1,室内温度定为T2。1121QWTTTr⑴)(解得:即J5.15171005.127391.152-73.15211QQQ2+Q1=-WQ2+1517.5=-100Q2=-1617.5(J)[143-5]高温热源温度T1=600K,低温热源温度T2=300K。今有120kJ的热直接从高温热源传给低温热源,求此过程两热源的总熵变ΔS。解:120kJ的热直接从高温热源传给低温热源,-Q1=Q2=120kJ)()(21TSTSS2211TQTQ300120000600120000)KJ(2001第3页[144-7]已知水的比定压热容cp=4.184J·g-1·K-1。今有1kg,10℃的水经下列三种不同过程加热成100℃的水求各过程的ΔSsys、ΔSamb、ΔSiso。⑴系统与100℃的热源接触;⑵系统先与55℃的热源接触至热平衡,再与100℃的热源接触;⑶系统依次与40℃,70℃的热源接触至热平衡,再与100℃的热源接触;解:⑴1-12KJ115515.28315.373ln184.41000lnTTmcSpsys1-12KJ100915.37315.28315.373184.41000ambpambsysambTTTmcTQS-1KJ14610091155ambsysisoSSS>0,过程自发⑵因S为状态函数,故-1KJ1155sysS21'221'2ambpambpambTTTmcTTTmcS15.37315.32815.373184.4100015.32815.28315.328184.41000-1KJ1078-1KJ7710781155ambsysisoSSS>0,过程自发⑶同理-1KJ1155sysS-1KJ1103ambS-1KJ52isoS>0,过程自发[144-10]1mol理想气体在T=300K下,从始态100kPa经历下列各过程达到各自的平衡态。求过程的Q,ΔS,ΔSiso。⑴可逆膨胀至末态压力50kPa;⑵反抗恒定外压50kPa不可逆膨胀致平衡态⑶向真空自由膨胀至原体积的2倍。解:⑴理想气体恒温过程:0U,)J(172950100ln300314.81ln21ppnRTWQ第4页)KJ(763.550100ln314.81ln1-21ppnRS)KJ(763.530017291-ambambTQTQS0763.5763.5ambisoSSS⑵S为状态函数,-1KJ763.5S理想气体恒温过程:0U,J1247100501300314.81112122122ppnRTpnRTpnRTpVVpWQ)KJ(157.430012471-ambambTQTQS)KJ(606.1157.4763.5-1ambisoSSS⑶S为状态函数,-1KJ763.5S理想气体向真空膨胀:Q=00ambambTQTQS)KJ(763.50763.5-1ambisoSSS结论:系统反抗的p越小,不可逆程度越大。[145-19]常压下将100g,27℃的水与200g,72℃的水在绝热容器中混合,求最终水温t及过程的熵变ΔS。已知水的比定压热容cp=4.184J·g-1·K-1。解:0)()(2211TTcmTTcmpp212211mmTmTmT200100345200300100)(K330℃57t21SSS第5页2211lnlnTTcmTTcmpp345330ln184.4200300330ln184.4100)KJ(68.21[145-20]将温度均为300K,压力均为100kPa的100dm3的H2(g)与50dm3的CH4(g)恒温恒压下混合,求过程的ΔS。假定H2(g)和CH4(g)均可认为是理想气体。解:RTpVn2H300314.8101001010033)mol(009.4)mol(005.2CH4nBBTmixxnRSln)lnln(4422CHCH总总nnnnnnRHH)6.0142.005ln005.26.0144.009ln009.4(314.8)KJ(83.311[146-25]常压下冰的熔点为273.15K,比熔化焓Δfush=333.3J·g-1,水的比定压热容cp=4.184J·g-1·K-1。系统的始态为一绝热容器中1kg,353.15K的水及0.5kg,273.15K的冰。求系统达到平衡后,过程的ΔS。解:H水=m水cp(T-T水)H冰=H冰1+H冰2=m冰fush+m冰cp(T-T冰)H水+H冰=0即:10004.184(T–353.15)+500333.3+5004.184(T–273.15)=0T=299.93K1-KJ3.4683-15.3533.9299ln184.41000ln水水水TTcmSp第6页1-KJ6.780515.2733.9299ln184.410005.1273.3333500ln冰冰冰冰冰TTcmThmSpfus-1KJ3.31226.78053.4683-冰水水SSS[146-27]已知常压下冰的熔点为0℃,摩尔熔化焓fusHm(H2O)=6.004kJ·mol-1,苯的熔点为5.51℃,摩尔熔化焓fusHm(C6H6)=9.832kJ·mol-1。液态水合固态苯的摩尔定压热容分别为Cp,m(H2O,l)=75.37J·mol-1·K-1及Cp,m(C6H6,l)=122.59J·mol-1·K-1,今有两个用绝热层包围的容器,一容器中为0℃的8molH2O(s)与2molH2O(l)成平衡,另一容器中为5.51℃的5molC6H6(l)与2molC6H6(s)成平衡。现将两容器接触,去掉两容器间的绝热层,使两容器达到新的平衡态。求过程的ΔS。解:H1=nfusHm=86004=48032(J)H2=nCp,m(水)(T–273.15)=1075.37(T–273.15)=753.7(T–273.15)H3=-nfusHm=-59832=-49160(J)H4=nCp,m(苯,s)(T–278.66)=10122.59(T–278.66)48032+753.7(T–273.15)+(-49160)+10122.59(T–278.66)=0T=277.13K1-1KJ84.1755.127360048fmfusTHnS1-12,2KJ90.1015.27313.277ln37.7510lnTTnCSmp1-3KJ42.176-66.27898325fmfusTHnS1-12,4KJ75.666.27813.277ln59.12210lnTTnCSmp-14321KJ57.3)75.6()42.176(84.17590.10SSSSS[146-28]将装有0.1mol乙醚(C2H5)2O(l)的小玻璃瓶放入容积为10dm3的恒容密闭真空容器中,并在35.51℃的恒温槽中恒温。已知乙醚的正常沸点为35.51℃,此条件下乙醚的摩尔蒸发焓vapHm=25.104kJ·mol-1。今将小玻璃瓶打碎,乙醚蒸发至平衡态。求:⑴乙醚蒸气的压力;第7页⑵过程的Q,ΔU,ΔH及ΔS。解:⑴Pa25664101066.308314.81.03VnRTp⑵H=nvapHm=0.125104=2510.4(J)恒容W=0Q=ΔU=H-ngRT=2510.4–0.18.3114308.66=2253.8(J)1-21KJ27.925664101325ln314.81.066.308251041.0lnppnRTHnSmvap[147-33]已知25℃时,液态水的标准生成吉布斯函数mfG(H2O,l)=-237.129kJ·mol-1,饱和蒸气压p*=3.1663kPa。求25℃时水蒸气的标准摩尔生成吉布斯函数。解:1363molm101810001018M)(lVm156121molJ74.1103.31661018)(pplVGm02G15123molJ85583166.3101ln15.298314.8lnd21ppnRTpVGppm132122molkJ570.22810008558074.1237129gO,HlO,HGGGGGmfmf[148-37]已知在100kPa下水的凝固点为0℃,在-5℃时,过冷水的比凝固焓-1gJ4.322hsl,过冷水和冰的饱和蒸气压分别为kPa422.0l,OH*2p及kPa414.0s,OH*2p。今在H2(g)+0.5O2(g)pθH2O(l)pθH2O(l)3166.3PaH2O(g)3166.3PaH2O(g)pθ1G2G3GgO,H2mfGlO,H2mfG第8页100kPa下,有-5℃1kg的过冷水变为同样温度、压力下的冰,设计可逆途径,分别按可逆途径计算过程的ΔG及ΔS。解:0051GG,042GGJ23690.422414.0ln15.268314.80148.181000)l(*)s(*ln3ppnRTGJ2369354321GGGGG
本文标题:衡水学院《物理化学》第三章热力学第二定律作业及答案
链接地址:https://www.777doc.com/doc-2091902 .html