您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 经营企划 > 线性代数习题3答案(高等教育)
习题31.11101134032设(,,),(,,),(,,),求和1110111003231112011340015解:(,,)(,,)(,,)(,,)(,,)(,,)(,,)1231232.32525131015104111设()()(),其中(,,,)(,,,),(,,,),求123123325132561[32513210151054111]61234解:因为()()(),所以(),所以(,,,)(,,,)(,,,)(,,,)123412343.12111111111111111111,,,设有(,,,),(,,,),(,,,),(,,,),(,,,)试将表示成的线性组合。12341234123412341234123412115111,,,;444451114444xxxxxxxxxxxxxxxxxxxx解:因为线性方程组的解为所以得:1234.111112313)t设讨论下面向量组的线性的相关性()(,,),(,,),(,,1111235,1355tttt解:因为所以,当时,向量组线性相关,当时线性无关。.323232.5213132321321的线性相关性,,线性无关,讨论,,设.0)23()32()23(.0)32()32()32(332123211321213313223211xxxxxxxxxxxx整理得:解:设.323232.0,0,0.023,032,023213132321321321321321321线性无关,,则:解得:线性无关,所以有:,,因为xxxxxxxxxxxx23123212313226.(1,2,3),(2,3,4),(3,4,5):,,123211*1232341201234530242000,ArrrArrrr11求下列向量组的秩和一个最大无关组:(1)解对以为列向量的矩阵进行初等行变换230所以此向量组的秩为2,它的一个最大无关组为12312341235123548.:,,;:,,,;:,,,.()()3,()4.:,,,ABCrArBrC已知向量组如果证明向量组的秩为4.123123412354123411223312354123545412354:()3,()3,()4,,,,,,,,,,,4,,,,,,,,,,,,,,rArBrCkkk证因为所以线性无关线性相关线性无关由定理知可由线性表示不妨设:假设向量组的秩不为4,则小于4,所以向量组线性相关同理可由线性表示不妨设:112233511122233351231235;()()(),,,,,,rrrkrkrkr则即可由线性表示,与线性无关矛盾,原命题成立.,2)()3,1,2(,)1,1,1(.10求此方程组的通解的两个解,且是线性方程组设ArbAxTT).(,)2,0,1()1,1,1(.0)2,0,1(312111)3,1,2(,)1,1,1(.0,2)(RkkbAxAxbAxAxArTTTTTTT的通解为:则的解是),,(),,的解,则(是又向量的基础解系中只有一个则方程组解:因为11.设s,,,21是线性方程组Ax=b的s个解,试证:若,121skkksskkk2211则也是Ax=b的解.证明:s,,,21是线性方程组Ax=b的s个解,则sibAi,,2,1,bkbkbkAkAkAkkkkAsssss2122112211)(bbkkks)(21即sskkk2211是Ax=b的解.0.122121线性无关,,,,的基础解系,证明性方程组是对应的其次线,,,的一个解,是非齐次线性方程组设rnrnAxbAx.).,,2,1(,00,,,,0)1(0,0.0)1()1(,0212122112211线性无关,,,,则的基础解系,所以:是因为式得:,并代入则又式两边得:左乘用证明:设rnirnrnrnrnrnrnixAxxxxxbxbAxxxx
本文标题:线性代数习题3答案(高等教育)
链接地址:https://www.777doc.com/doc-2133944 .html