您好,欢迎访问三七文档
碧波中学高二物理期末复习知识网络磁场的产生磁体周围产生磁场电流周围产生磁场安培分子电流假说磁场的描述定量描述:磁感应强度ILFB形象描述:磁感线几种典型磁场的磁感线分布条形磁铁蹄形磁铁匀强磁场均匀辐向磁场直线电流环形电流通电螺线管地磁场磁场电荷的运动磁场对电流的作用大小B∥L,F=0B⊥L,F=BIL方向:左手定则电流表的工作原理磁场对运动电荷的作用大小v∥B,F=0v⊥B,F=Bqv方向:左手定则带电粒子在匀强磁场中做圆周运动轨道半径Bqmvr运动周期BqmT2重要应用质谱仪回旋加速器……一.磁场及其磁场的描述专题1、磁场的产生⑴磁体的周围存在磁场(与电场一样是一种特殊物质)⑵电流(运动电荷)周围存在磁场奥斯特实验南北放置导线通电后发生偏转电流产生磁场电荷运动产生磁场一、磁场的描述2、磁场的基本性质对放入其中的磁体、电流(运动电荷)有力的作用同名磁极相互排斥异名磁极相互吸引⑴⑵磁体对电流的作用⑶电流对电流的作用3、磁体间相互作用的本质磁场磁体磁体磁体或电流磁体或电流磁场4、磁现象的电本质安培分子电流假说:在原子、分子等物质微粒内部存在一种环形电流——分子电流,分子电流使每个物质微粒都成为微小的磁体,它的两侧相当于两个磁极。解释磁化、消磁现象不显磁性显磁性磁化消磁总结:一切磁现象都是由电荷的运动产生的总结:磁场的基本特性之一就是对处于其中的磁体、电流或运动电荷有力的作用。磁极与磁极之间、磁体与电流之间、电流与电流之间的作用力都是通过自己的磁场而作用于对方的。5、磁场的方向:规定在磁场中任一点,小磁针静止时N极指向(即N极的受力方向)就是该点的磁场方向。(注意:不是电流的受力方向)磁场的方向小磁针静止时N极指向N极的受力方向磁感线某点的切线方向磁感应强度的方向五个方向的统一:6、磁感线⑴用来形象地描述磁场中各点的磁场方向和强弱的假想曲线⑵磁感线上每一点的切线方向就是该点的磁场方向,即小磁针N极在该点的受力方向或静止时的指向⑶磁感线的疏密表示磁场的强弱⑷磁感线是封闭曲线(和静电场的电场线不同)几种磁场的磁感线:安培定则(右手螺旋定则):对直导线,四指指磁感线方向;对环行电流,大拇指指中心轴线上的磁感线方向;对长直螺线管大拇指指螺线管内部的磁感线方向。③通电直导线判断方法:立体图纵截面图横截面图④环形电流判断方法:立体图纵截面图横截面图⑤通电螺线管判断方法电流安培定则(二)立体图横截面图纵截面图⑥地磁场1.地磁场的N极在地球的南端(东经139.9度,南纬66.6度的南极洲威尔斯附近;S极在地球的北端西经100.5度,东经75.5度的北美洲帕里群岛附近;2.水平分量从南到北,竖直分量北半球垂直地面向下,南半球垂直地面向上;3.赤道平面,距离地面高度相等的点B的大小和方向相同.7、磁感应强度描述磁场的强弱与方向的物理量⑴定义:在磁场中垂直磁场方向的通电导线,受到的安培力跟电流和导线长度的乘积的比值。⑵表达式:ILFB单位:特斯拉(T)⑶矢量:方向为该点的磁场方向,即通过该点的磁感线的切线方向⑴电流磁场方向的判断★在地球赤道上空有一小磁针处于水平静止状态,突然发现小磁针N极向东偏转,由此可知()A.一定是小磁针正东方向上有一条形磁铁的N极靠近小磁针B.一定是小磁针正东方向上有一条形磁铁的S极靠近小磁针C.可能是小磁针正上方有电子流自南向北水平通过D.可能是小磁针正上方有电子流自北向南水平通过C★一束电子流沿x轴正方向高速运动,如图所示,则电子流产生的磁场在z轴上的点P处的方向是()A.沿y轴正方向B.沿y轴负方向C.沿z轴正方向D.沿z轴负方向A★下列说法中正确的是()A.磁感线可以表示磁场的方向和强弱B.磁感线从磁体的N极出发,终止于磁体的S极C.磁铁能产生磁场,电流也能产生磁场D.放入通电螺线管内的小磁针,根据异名磁极相吸的原则,小磁针的N极一定指向通电螺线管的S极⑵磁感线AC⑶磁感应强度的定义★关于磁感应强度,下列说法中错误的是()A.由B=F/IL可知,B与F成正比,与IL成反比B.由B=F/IL可知,一小段通电导体在某处不受磁场力,说明此处一定无磁场C.通电导线在磁场中受力越大,说明磁场越强D.磁感应强度的方向就是该处电流受力方向ABCD⑷磁感应强度的矢量性★两根长直通电导线互相平行,电流方向相同.它们的截面处于一个等边三角形ABC的A和B处.如图所示,两通电导线在C处的磁场的磁感应强度的值都是B,则C处磁场的总磁感应强度是()A.2BB.BC.0D.B3D1、磁场对电流的作用力安培力⑴方向:左手定则磁场方向判断下列通电导线的受力方向电流方向电流方向安培力方向二.安培力及判定安培力作用下物理运动方向专题判断下列导线的电流方向或磁场方向或受力方向⑵大小F=BILB⊥I如B∥I则F=0如B与I成任意角则把L投影到与B垂直和平行的方向上与B垂直的为有效L为在磁场中的有效长度F=BILsinθB与I的夹角2、通电导线在安培力作用下运动的定性判断★如图所示,有一金属棒ab,质量为m=5g,电阻R=1Ω,可以无摩擦地在两条平行导轨上滑行。导轨间距离为d=10cm,电阻不计。导轨平面与水平面的夹角θ=30°,整个装置放在磁感应强度B=0.4T的匀强磁场中,磁场方向竖直向上。电源的电动势E=2V,内电阻r=0.1Ω,试求变阻器取值是多少时,可使金属棒静止在导轨上。3、电流在安培力作用下的定量计算问题★如图,相距20cm的两根光滑平行铜导轨,导轨平面倾角为θ=370,上面放着质量为80g的金属杆ab,整个装置放在B=0.2T的匀强磁场中.(1)若磁场方向竖直向下,要使金属杆静止在导轨上,必须通以多大的电流.(2)若磁场方向垂直斜面向下,要使金属杆静止在导轨上,必须通以多大的电流。★如图所示,两根平行光滑轨道水平放置,相互间隔d=0.1m,质量为m=3g的金属棒置于轨道一端.匀强磁场B=0.1T,方向竖直向下,轨道平面距地面高度h=0.8m,当接通开关S时,金属棒由于受磁场力作用而被水平抛出,落地点水平距离s=2m,求接通S瞬间,通过金属棒的电量.Bhs★在磁感应强度B=0.08T,方向竖直向下的匀强磁场中,一根长l1=20cm,质量m=24g的金属横杆水平地悬挂在两根长均为24cm的轻细导线上,电路中通以图示的电流,电流强度保持在2.5A,横杆在悬线偏离竖直位置θ=30°处时由静止开始摆下,求横杆通过最低点的瞬时速度大小。第二课时磁场对运动电荷的作用一、洛仑兹力磁场对运动电荷的作用力1、大小:F洛=Bqv当B∥v时,电荷不受洛仑兹力当B⊥v时,电荷所受洛仑兹力最大当B与v成θ角时,F洛=Bqvsinθ2、方向:用左手定则判断F洛+v注意:四指的方向为正电荷的运动方向,或负电荷运动的反方向。3、特点:洛仑兹力始终与电荷运动方向垂直,只改变速度的方向,而不改变速度的大小,所以洛仑兹力不做功。4、洛仑兹力与安培力的关系洛仑兹力是安培力的微观表现,安培力是洛仑兹力的宏观体现2、运动方向与磁场方向垂直,做匀速圆周运动⑴洛仑兹力提供向心力2224TrmrvmBqv⑵轨道半径:qmUBBqmEBqpBqmvrk212BqmT2⑶周期:与v、r无关二、带电粒子(不计重力)在匀强磁场中的运动1、运动方向与磁场方向平行,做匀速直线运动⑷圆心、半径、运动时间的确定①圆心的确定a、两个速度方向垂直线的交点。(常用在有界磁场的入射与出射方向已知的情况下)VOb、一个速度方向的垂直线和一条弦的中垂线的交点O②半径的确定应用几何知识来确定!③运动时间:Tt03603、理解与巩固★两个粒子带电量相等,在同一匀强磁场中只受磁场力而做匀速圆周运动,则()A.若速率相等,则半径相等B.若速率相等,则周期相等C.若质量与速率乘积相等,则半径相等D.若动能相等,则周期相等★如图所示,在长直导线中有恒电流I通过,导线正下方电子初速度v0方向与电流I的方向相同,电子将()A.沿路径a运动,轨迹是圆B.沿路径a运动,轨迹半径越来越大C.沿路径a运动,轨迹半径越来越小D.沿路径b运动,轨迹半径越来越大★垂直纸面向外的匀强磁场仅限于宽度为d的条形区域内,磁感应强度为B.一个质量为m、电量为q的粒子以一定的速度垂直于磁场边界方向从a点垂直飞入磁场区,如图所示,当它飞离磁场区时,运动方向偏转θ角.试求粒子的运动速度v以及在磁场中运动的时间t.4、带电粒子在有界磁场中运动问题分类解析OBSVθP图1一、带电粒子在半无界磁场中的运动MNO,LAO图3P二、带电粒子在圆形磁场中的运动BABdVV300O图5三、带电粒子在长足够大的长方形磁场中的运动llr1OV+qV图6四、带电粒子在正方形磁场中的运动五、带电粒子在环状磁场中的运动★一个质量为m电荷量为q的带电粒子从x轴上的P(a,0)点以速度v,沿与x正方向成60°的方向射入第一象限内的匀强磁场中,并恰好垂直于y轴射出第一象限。求匀强磁场的磁感应强度B、射出点的坐标以及在磁场运动的时间。★圆心为O、半径为r的圆形区域中有一个磁感强度为B、方向为垂直于纸面向里的匀强磁场,与区域边缘的最短距离为L的O'处有一竖直放置的荧屏MN,今有一质量为m的电子以速率v从左侧沿OO'方向垂直射入磁场,越出磁场后打在荧光屏上之P点,如图3所示,求O'P的长度和电子通过磁场所用的时间。2、带电体在复合场中运动问题分析⑴组合场(电场与磁场没有同时出现在同一区域)★试质谱仪★回顾:带电粒子在匀强磁场中作匀速圆周运动•如图所示,带电粒子垂直射入匀强磁场中因洛仑兹力始终垂直于速度,所以当带电粒子垂直射入匀强磁场时,一定作匀速圆周运动,其向心力由洛仑兹力提供.qBvmvrmTrrmvqBTmqB2222ππ,,.从上式可推出,若带电粒于在磁场中,所通过的圆弧对应的圆心角为θ(弧度),则运动时间tTmqBθπθ2.即运动的时间与粒子的初速、半径无关.如图所示.二、确定带电粒子在磁场中运动轨迹的方法一、带电粒子在匀强磁场中的运动规律1、物理方法:2、轨道半径:R=mv/qB3、周期:T=2πm/qB1、带电粒子在磁场中(v⊥B)只受洛仑兹力,粒子做匀速圆周运动。1、物理方法例1:如图所示,一束电子(电量为e)以速度v垂直射入磁感应强度为B、宽度为d的匀强磁场中,穿透磁场时速度方向与电子原来入射方向的夹角是30o,则电子的质量是多少?穿透磁场的时间又是多少?二、确定带电粒子在磁场中运动轨迹的方法一、带电粒子在匀强磁场中的运动规律1、物理方法:2、物理和几何方法:作出带电粒子在磁场中两个位置所受洛仑兹力,沿其方向延长线的交点确定圆心,从而确定其运动轨迹。2、轨道半径:R=mv/qB3、周期:T=2πm/qB1、带电粒子在磁场中(v⊥B)只受洛仑兹力,粒子做匀速圆周运动。2、物理和几何方法例2:如图所示,在y0的区域内存在匀强磁场,磁场方向垂直于xy平面并指向纸面外,磁感应强度为B。一带正电的粒子以速度v0从O点射入磁场,入射方向在xy平面内,与x轴正向的夹角为θ。若粒子射出磁场的位置与O点的距离为L,求该粒子的电量和质量之比q/m。xyopθv2、物理和几何方法例2:如图所示,在y0的区域内存在匀强磁场,磁场方向垂直于xy平面并指向纸面外,磁感应强度为B。一带正电的粒子以速度v0从O点射入磁场,入射方向在xy平面内,与x轴正向的夹角为θ。若粒子射出磁场的位置与O点的距离为L,求该粒子的电量和质量之比q/m。解:由几何知识:粒子的运动半径:r=L/2sinθ粒子的运动半径:r=mv/qB由上两式可得粒子的荷质比:q/m=2mvsinθ/BL作出粒子运动轨迹如图。设P点为出射点。xyopθvθθF洛v二、确定带电粒子在磁场中运动轨迹的方法一、带电粒子在匀强磁场中的运动规律1、物理方法:3、几何方法:2、物理和几何方法:作出带电粒子在磁场中两个位置所受洛仑兹力,沿其方向延长线的交点确定圆心,从而确定其运动轨迹。作出带电粒子在磁场中某个位置所受洛仑兹力,沿其方向的延长线与圆周上两点连线的中
本文标题:磁场期末复习课件.
链接地址:https://www.777doc.com/doc-2144939 .html