您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 招聘面试 > 笔试NO1秘笈_行测部分
行测复习要点及注意事项公务员考试的大准则一是,公务员考试感受最深的一句话是,“天道酬勤”,公务员是考出来的、念出来的,付出总会有回报,考公务员,要全身心地投入,各个模块一个个突破,发现错误,善于总结,不断模拟真题,最重要的是要用心认真地去学去念。我是一个脑瓜子极其平凡的人,但请相信,平凡的人如果勤奋,一旦认真是会有好结果的,是不会比聪明的人差的。二是,要善于总结。不仅是我总结,自己总结更关键,最好用一本子,或者用电脑WORD随时写下心得总结。有总结,心里才有底,有成就感,复习会更系统,同时一些要点、难点、错题写下来了,以后再复习时就方便了,也不会忘复习了。时间倒不是最大问题,我用60天总结了笔试这么多内容,事实上中间很多时间被我浪费了。当然,有时间,你的成绩就更高了。三是,战战兢兢的态度。我笔试、面试都是一个感觉,战战兢兢,如履薄冰,如临深渊,深怕自己什么地方漏了,什么地方答错了。这样有好处,好处是复习会比较全面,精细,只要临场发挥得正常就OK了;坏处也很明显,压力很大。第一部分、数字推理一、基本要求熟记熟悉常见数列,保持数字的敏感性,同时要注意倒序。自然数平方数列:4,1,0,1,4,9,16,25,36,49,64,81,100,121,169,196,225,256,289,324,361,400……自然数立方数列:-8,-1,0,1,8,27,64,125,216,343,512,729,1000质数数列:2,3,5,7,11,13,17……(注意倒序,如17,13,11,7,5,3,2)合数数列:4,6,8,9,10,12,14…….(注意倒序)二、解题思路:1基本思路:第一反应是两项间相减,相除,平方,立方。所谓万变不离其综,数字推理考察最基本的形式是等差,等比,平方,立方,质数列,合数列。相减,是否二级等差。8,15,24,35,(48)相除,如商约有规律,则为隐藏等比。4,7,15,29,59,(59*2-1)初看相领项的商约为2,再看4*2-1=7,7*2+1=15……2特殊观察:项很多,分组。三个一组,两个一组4,3,1,12,9,3,17,5,(12)三个一组19,4,18,3,16,1,17,(2)2,-1,4,0,5,4,7,9,11,(14)两项和为平方数列。400,200,380,190,350,170,300,(130)两项差为等差数列隔项,是否有规律0,12,24,14,120,16(7^3-7)数字从小到大到小,与指数有关1,32,81,64,25,6,1,1/8隔项,是否有规律0,12,24,14,120,16(7^3-7)每个数都两个数以上,考虑拆分相加(相乘)法。87,57,36,19,(1*9+1)256,269,286,302,(302+3+0+2)数跳得大,与次方(不是特别大),乘法(跳得很大)有关1,2,6,42,(42^2+42)3,7,16,107,(16*107-5)每三项/二项相加,是否有规律。1,2,5,20,39,(125-20-39)21,15,34,30,51,(10^2-51)C=A^2-B及变形(看到前面都是正数,突然一个负数,可以试试)3,5,4,21,(4^2-21),4465,6,19,17,344,(-55)-1,0,1,2,9,(9^3+1)C=A^2+B及变形(数字变化较大)1,6,7,43,(49+43)1,2,5,27,(5+27^2)分数,通分,使分子/分母相同,或者分子分母之间有联系。/也有考虑到等比的可能2/3,1/3,2/9,1/6,(2/15)3/1,5/2,7/2,12/5,(18/7)分子分母相减为质数列1/2,5/4,11/7,19/12,28/19,(38/30)分母差为合数列,分子差为质数列。3,2,7/2,12/5,(12/1)通分,3,2变形为3/1,6/3,则各项分子、分母差为质数数列。64,48,36,27,81/4,(243/16)等比数列。出现三个连续自然数,则要考虑合数数列变种的可能。7,9,11,12,13,(12+3)8,12,16,18,20,(12*2)突然出现非正常的数,考虑C项等于A项和B项之间加减乘除,或者与常数/数列的变形2,1,7,23,83,(A*2+B*3)思路是将C化为A与B的变形,再尝试是否正确。1,3,4,7,11,(18)8,5,3,2,1,1,(1-1)首尾项的关系,出现大小乱现的规律就要考虑。3,6,4,(18),12,24首尾相乘10,4,3,5,4,(-2)首尾相加旁边两项(如a1,a3)与中间项(如a2)的关系1,4,3,-1,-4,-3,(-3―(-4))1/2,1/6,1/3,2,6,3,(1/2)B项等于A项乘一个数后加减一个常数3,5,9,17,(33)5,6,8,12,20,(20*2-4)如果出现从大排到小的数,可能是A项等于B项与C项之间加减乘除。157,65,27,11,5,(11-5*2)一个数反复出现可能是次方关系,也可能是差值关系-1,-2,-1,2,(-7)差值是2级等差1,0,-1,0,7,(2^6-6^2)1,0,1,8,9,(4^1)除3求余题,做题没想法时,试试(亦有除5求余)4,9,1,3,7,6,(C)A.5B.6.C.7D.8(余数是1,0,1,0,10,1)3.怪题:日期型2100-2-9,2100-2-13,2100-2-18,2100-2-24,(2100-3-3)结绳计数1212,2122,3211,131221,(311322)2122指1212有2个1,2个2.第二部分、图形推理一.基本思路:看是否相加,相减,求同,留同存异,去同相加,相加再去同,一笔划问题,笔划数,线条数,旋转,黑白相间,轴对称/中心对称,旋转,或者答案只有一个图可能通过旋转转成。视觉推理偏向奇偶项,回到初始位置.注:5角星不是中心对称二.特殊思路:1.有阴影的图形可能与面积有关,或者阴影在旋转,还有就是黑白相间。第一组,1/21/41/4第二组,1,1/2,(1/2A)两个阴影,里面逆时针转,外面顺时针转。2.交点个数一般都表现在相交露头的交点上或者一条线段穿过多边形交点数为,3,3,3第二组为3,3,(3)交点数为,1,1,1第二组为2,2,(2)但是,露头的交点还有其它情形。此题算S形,露头数,1,3,5,7,9,11,(13B),15,173.如果一组图形的每个元素有很多种,则可从以下思路,元素不同种类的个数,或者元素的个数。出现一堆乱七八遭的图形,要考虑此种可能。第一组2,4,6种元素,第二组,1,3,(5)种类,1,2,3,4(5)元素个数为4,4,44,4,(4)4.包含的块数/分割的块数出现一些乱七八遭的图形,或者出现明显的空间数,要考虑此种可能。包含的块数,1,2,3,4,5,(6,B)分割的块数为,3,3,3,3,3,(3,A)5.特点是,大部分有两种不同元素,每个图形两种类个数各不相同。圆形相当于两个方框,这样,全都是八个方框,选D6.角个数只要出现成角度图形都需要注意3,4,5,6,(7)7.直线/曲线出现时,有可能是,线条数。或者,都含曲线,都含直线,答案都不含直线,都不含曲线。线条数是,3,3,34,4,48.当出现英文字母时,有可能是笔划数,有可能是是否直线/曲线问题,又或者是相隔一定数的字母。如,CSU,DB?A.PB.OC.LD.R分析:C,S,U都是一笔,D,B,P都是两笔。分析:B,Q,P都含直线,曲线。A,V,L都只含直线。K,M,OD,F,?A.LB.HC,PD.Z分析:K,M相距2,O和M距2,D和F距2,F和H距2A,E,IJ,N,?A.GB.MC.TD.R分析:A,E,I是第1,5,9个字母,J,N,R是第10,14,189.明显的重心问题重心变化,下,中,上下,中,(上),选C10.图形和汉字同时出现,可能是笔划数笔划数为,1,2,3,2,(1)出现汉字,可是同包含爱,仅,叉,圣,?A.天B.神C.受D门同包含“又”11.图形有对称轴时,有可能是算数量第一组对称轴数有,3,4,无数都三条以上第二组,5,4,(3条以上)12.九宫格的和差关系,可能是考察行与行之间的关系。第一行,等于第二行加第三行。也可能是考察,一行求和后,再考察行与行之间的关系。直线线条数4,5,70,4,34,1,?13.5,3,0,1,2,(4)遇到数量是这种类型的,可能是整体定序后是一个等差数列。慎用。析:观察所给出的左边的图形,出方框范围的线条有3,5,1,2,0,如果再加上4就构成了一个公差为1的等差数列,选项C有4个出方框范围的线条,故选C。14.数字九宫格这类九宫格一般把中间数化为两数相乘。26=2*13=2*(7+8-2)10=2*5=2*(3+6-4)所求项为2*(9+2-3)=1615.如果有明显的开口时,要考虑开口数。要注意这种题型越来越多。例:第一组是DAN第二组是LS?选项:A.WB.CC.RD.Q析:因为第一组开口数0,1,2第二组开口数是1,2,3(A)第三部分、判断推理最关键的地方,看清题目,问的是不能还是能,加强还是削弱(是否有“除了”这个词)一.最多与最少概念之间的关系主要可以分为三大类:一是包含,如“江苏人”与“南京人”;二是交叉,如“江苏人”与“学生”;三是全异,如“江苏人”与“北京人”。全异的人数最多,全包含的人数最少,以下面例子为例。各行分割空间和3,2,381,3,483,4,?8例1:房间里有一批人,其中有一个是沈阳人,三个是南方人,两个是广东人,两个是作家,三个是诗人。如果以上介绍涉及到了房间中所有的人,那么,房间里最少可能是几人,最多可能是几人?析:广东人是南方人,所以三个南方人和两个广东人,其实只有3个人。现考虑全异的情况,即沈阳人,南方人,都不是作家和诗人,这样人数会最多。1+3+2+3=9,最多9人。现考虑全包含的情况,假设南方人中,3个全是诗人,有两个是广东人,有两个南方人是作家,已经占3个人了;这样沈阳人也是1人,即最少有4人。(本题最容易忽略的是,南方人有可能既是作家,又是诗人,最少的就是把少的包在多的中)例2:某大学某某寝室中住着若干个学生,其中,1个哈尔滨人,2个北方人,1个是广东人,2个在法律系,3个是进修生。因此,该寝室中恰好有8人。以下各项关于该寝室的断定是真的,都能加强上述论证,除了A、题干中的介绍涉及了寝室中所有的人。B、广东学生在法律系。C、哈尔滨学生在财经系。D、进修生都是南方人。析:本题,哈尔滨人是北方人,则寝室最多的人数是:2+1+2+3=8人,因为寝室正好8人,所以,北方人,广东人,法律系,进修生,全部是相异的,一旦有交叉,必然造成寝室人数少于8人。所以选B二.应该注意的几句话1.不可能所有的错误都能避免不可能所有的错误都能避免,怎么理解?A.可能有的错误不能避免B.必然有的错误不能避免。答案是B,不可能所有的错误都能避免,说明了至少存在一个例子错误是不能避免的,可能有一个例子,可能有很多个例子,即必然有的错误不能避免。可能有的错误不能避免,只是可能,说明有可能所有的错误都能避免。2.A.妇女能顶半边天,祥林嫂是妇女,所以,祥林嫂能顶半边天。此句话推理有误。因为妇女能顶半边天的妇女是全集合概念,与祥林嫂是妇女中的妇女的概念不一至。类似于,孩子都是祖国的花朵,花朵都需要浇水,所以孩子都需要浇水。又,鲁迅的小说不是一天能读完的,《呐喊》是鲁迅的小说,所以,《呐喊》不是一天能读完的。错误,因为前面小说是相对鲁迅所有小说,集合的概念,后项是非集合概念。2.B.对网络聊天者进行了一次调查,得到这些被调查的存不良企图的网络聊天者中,一定存在精神空虚者。那么能不能得出“存在不良企图网络聊天者中一定有精神空虚者”呢?答案是否定的,因为要得出的结论是全集的概念,而题干只是针对调查者。2.C.对近三年刑事犯调查表明,60%都为己记录在案的350名惯犯所为。报告同时揭示,严重刑事犯罪案件的作案者半数以上是吸毒者。那么能不能得出“350名惯犯中一定有吸毒者
本文标题:笔试NO1秘笈_行测部分
链接地址:https://www.777doc.com/doc-2152532 .html