您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 综合/其它 > 第六章多元函数微分学答案习题68
1习题6.833232332233232.1.(,):(1)20.3320,3220.32,.3232(2)ln.1fFzzxyxzzxyzzzzxzxzxzyxxxzzzxzxzyyyyxzzzzxxzyxxxzyyzzxyzzyxz在本节习题中所涉及的函数或都是有连续一阶偏导数的函数求由下列方程确定的隐函数的所有一阶偏导数211111,1.11,.1111(3)sin(01).1(1cos)0,(1cos)1.11,.1cos1cos(4).lnln,lxzxxzxzzzzzyxyzyzzzzzzxyzyyzyyzzxzzyzzzzxyzzxzyzzyzzzzzxzyyxzzyyxxy1112111n.lnlnln,lnlnln.lnlnlnln(5)coscoscos1.cossincossin(sincos)0,sinxxxzxxzzxxzxzxxzyyzzzzzzzxxzyyxzzyxzyzzyzyzzzyxzyyxyzyyyxyzzyyxyzyyxyyzzxzzyzxyzxyzxxxy22221222212212.cossincossincos(sincos)0,.cossin2.(,)0(),.(,)(2)(,)(1)0,(,)(,)2(,)(xxzzxyzxyzyzxyyxyzdyfxyxyyyxdxfxyxyyxyyfxyxyyyfxyxyfxyxydydxxyfxyxyf设由方程确定隐函数为求解2.,)xyxy22222222222233.cos,.sincos0.sin(1)0,.1(1)cossin()(1)sin(1)cossin()1(1)(1)cossin.(1)4.zzzzzzzzzzzzzzzzzxyexxzzyxyzxyeyxyexxezyexyyxyezxxeyxyyexyyxyeeeexyexyyeF设求及设解1231233232331231232333(,,)0,,.(1)0,.(1)0,.(,,)0,()()0,,zzxxyxyzxyFFFzzFFFxxFFFzzFFyyFFxxyxyzFdxFdxdyFdxdydzFFFFFzdzdxdyFFx求解另解d12323332222,.5.(,)(,,)0,,(0),(,)0(,)8.(,,)0,(0).(yxzzzyxxyzzzzFFFFFzFyFzzxyFxyzFFdzdxdyFFFFxyzxyzzzxydzFFdFxyzFdxFdyFdzdzdxdyFFFdFx设是方程确定的隐函数利用一阶微分形式的不变型证明并求确定的隐函数的微分记证2222121212121212212,)0.(222)(2)0,(2)(2)(22)0,(2)(2).2()6.Jacobisin.sincossinsinyzxyzFxdxydyzdzFydxxdyzdzxFyFdxyFxFdyzFzFdzxFyFdxyFxFdydzzFFJrxryr证明球坐标变换的行列式证coszr322232sincoscoscossinsin,sinsincossinsincos,cossin.sincoscoscossinsinsinsincossinsincoscossin0cossinsinsin.7.,dxdrrdrddydrrdrddzdrrdrrJrrrrrrxuvy设由证22332(,)110,,223.22,.222222110,,22,,2231313()()42424uvzuvzzxyzzxyuvxyduvdvdudvdxvdxdydyudxdudvuduvdvdyvuvuxyuvdxdydydxdudvdzdxdydxdy,确定函数,求当时,与的值.2解dz=3u,3,0.4dxzzxy422222220,8.5.1,1,2.0,0.,.()()()()xuyvuvxyuuxyuvxxyudxxduvdyydvvduudvydxxdyxduydvudxvdyvduudvydxxdyuudxvdyyydxxdyuydxuvxydyduxuyvxuyvuuyx设求当时与的值=-解2222222222,.()()()(),().2()().()uuvxyxuyvyxuyvxydxxdyvudxvdyxyuvdxxvdydvxuyvxuyvvxyuvxxuyvuuvuxuyvuyuxyuuyxxxxxuyvxuyvuuuvxyxyxyxx=-=-x22222222()().()1,1,25()3,442()()()4(5)5(uyvuvuvvuyxuyvuxyuvxyxxxxxuyvxyuvuuyvxyuvxxuyvxxuyvuuvuxuyvuyuxyuxxxxxuyv当时,=-=2253)5544.1632()()25.()32uvuvvuyxuyvuxyuvxyuxxxxxyxuyv522219.,2,1,1,2.22202222,,222222,.22221,1,22020,224dxdyxyzxyzxyzdzdzxdxydyzdzdxdydzxdxydyzdzdxdydzzyxzdxdzdydzyydxzydyxzdzydzyxyzdxzydyxdzydz设求当时与的值当时解41.22410.coscos,cossin,sin,.cossinsinsincoscoscoscossincoscoscoscoscocossinsinsincoscoszyzxyzxdddxdddyddzdxdydxd设求由前两个方程解出-sincos解-sincos22222222ssinsincoscossin,sinsincoscoscossincossinsincoscos.sin1,220,.1,.1dydxdydzddxdyzxxzxyzxdxzdzzxxzzxyzzxxxzxyz2另解再解611.(,)(,)(,)(,)((,),(,))((,),(,))(,)(,)(,).(,)(,)(,),,uuxyvvxyxxyyuuxyvvxyDuvDuvDxyDDxyDuuxuyuuxuyxyxyvv设及有连续一阶偏导数,又设及也有连续一阶偏导数,且使复合函数及有定义.证明证,,(,)(,)(,)(,).(,)(,)xvyvvxvyxyxyuxuyuxuyuuxyxyDuvvvvxvyvxvyDxyxyuuxxxyDuvDxyvvyyDxyDxy
本文标题:第六章多元函数微分学答案习题68
链接地址:https://www.777doc.com/doc-2158642 .html