您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 其它文档 > 第26章二次函数复习教案
1《二次函数》复习教案教学目标:1.理解二次函数的概念,掌握二次函数y=ax2+bx+c(a≠0)的图象与性质;会用描点法画抛物线,能确定抛物线的顶点、对称轴、开口方向,能较熟练地由抛物线y=ax2(a≠0)经过适当平移得到y=a(x-h)2+k(a≠0)的图象。2.会用待定系数法求二次函数的解析式,能结合二次函数的图象掌握二次函数的性质。3.使学生掌握二次函数模型的建立,并能运用二次函数的知识解决实际问题。教学重点:1.用配方法求二次函数的顶点,对称轴,根据图象概括二次函数的性质。2.二次函数三种解析式的求法。3.利用二次函数的知识解决实际问题,并对解决问题的方法进行反思。教学难点:1.将实际问题转化为二次函数,并运用二次函数性质将以解决。2.二次函数与一元二次方程、不等式的联系,数形结合思想的渗透于应用。3.运用二次函数知识解决综合性的几何问题。教学过程:专题解析,强化练习,剖析知识点专题一、二次函数的概念,二次函数y=ax2+bx+c(a≠0)的图象性质。例1:已知函数4mm2x)2m(y是关于x的二次函数,求:(1)满足条件的m值;(2)m为何值时,抛物线有最低点?求出这个最低点.这时当x为何值时,y随x的增大而增大?(3)m为何值时,函数有最大值?最大值是什么?这时当x为何值时,y随x的增大而减小?学生活动:学生,回顾例题所涉及的知识点,让学生分析解题方法,以及涉及的知识点。教师精析点评,二次函数的一般式为y=ax2+bx+c(a≠0)。强调a≠0.而常数b、c可以为0,当b,c同时为0时,抛物线为y=ax2(a≠0)。此时,抛物线顶点为(0,0),对称轴是y轴,即直线x=0。(1)使4mm2x)2m(y是关于x的二次函数,则m2+m-4=2,且m+2≠0,即:m2+m-4=2,m+2≠0,解得;m=2或m=-3,m≠-2(2)抛物线有最低点的条件是它开口向上,即m+2>0,(3)函数有最大值的条件是抛物线开口向下,即m+2<0。抛物线的增减性要结合图象进行分析,要求学生画出草图,渗透数形结合思想,进行观察分析。强化练习;已知函数mm2x)1m(y是二次函数,其图象开口方向向下,则m=_____,顶点为2_____,当x_____0时,y随x的增大而增大,当x_____0时,y随x的增大而减小。专题二、用配方法求抛物线的顶点,对称轴;抛物线的画法,平移规律。例2:用配方法求出抛物线y=-3x2-6x+8的顶点坐标、对称轴,并画出函数大致图象,说明通过怎样的平移,可得到抛物线y=-3x2。学生活动:寻找配方方法,确定抛物线画法的步骤,探索平移的规律。充分研究后让学生代表归纳解题方法与思路。教师归纳点评:(1)教师在学生回答的基础上强调配方的方法及配方的意义,指出抛物线的一般式与顶点式的互化关系:y=ax2+bx+c→y=a(x+b2a)2+4ac-b24a(2)强调利用抛物线的对称性进行画图,先确定抛物线的顶点、对称轴,利用对称性列表、描点、连线。(3)抛物线的平移抓住关键点顶点的移动,分析完例题后归纳平移规律;左右平移,左加右减,改变自变量;上下平移,上加下减,改变常数项。强化练习:(1)通过配方,求抛物线y=12x2-4x+5的开口方向、对称轴及顶点坐标,再画出图象。(2)抛物线y=x2+bx+c的图象向左平移2个单位。再向上平移3个单位,得抛物线y=x2-2x+1,求:b与c的值。专题三、用待定系数法确定二次函数解析式。例3:根据下列条件,求出二次函数的解析式。(1)抛物线y=ax2+bx+c经过点(0,1),(1,3),(-1,1)三点。(2)抛物线顶点P(-1,-8),且过点A(0,-6)。(3)已知二次函数y=ax2+bx+c的图象过(3,0),(2,-3)两点,并且以x=1为对称轴。(4)已知二次函数y=ax2+bx+c的图象经过一次函数y=-23x+3的图象与x轴、y轴的交点;且过(1,1),求这个二次函数解析式,并把它化为y=a(x-h)2+k的形式。学生活动:题目中的四个小题应选择什么样的函数解析式?并让学生阐述解题方法。教师归纳:二次函数解析式常用的有三种形式:(1)一般式:y=ax2+bx+c(a≠0)(2)顶点式:y=a(x-h)2+k(a≠0)(3)交点式:y=a(x-x1)(x-x2)(a≠0)当已知抛物线上任意三点时,通常设为一般式y=ax2+bx+c形式。当已知抛物线的顶点与抛物线上另一点时,通常设为顶点式y=a(x-h)2+k形式。当已知抛物线与x轴的交点或交点横坐标时,通常设为交点式y=a(x-x1)(x-x2)。专题四、数学思想方法-----数形结合的思想例4:如图,已知抛物线y1=ax2+bx+c与直线y2=mx+n相交于A、B两点,且A(1,1),B(4,2),则当y1<0时,自变量x的取值范围是;当y1>y2时,自变量x3-2CBAO12032AB的取值范围是。例5:如图,已知二次函数y=ax2+bx+c的图像与x轴交于点C(-2,0),A(x1,0),且1<x1<2,与y轴的正半轴交于点B,且OA=OB,下列结论:①a<b<0;②b2-4ac>0;③2a-b+1>0;④ac+b+1=0。其中正确的序号为。例4图例五图教师归纳:善于捕捉图中蕴藏的信息,充分利用数形结合的思想是解决此类问题的关键。专题五、二次函数的实际应用(最大利润问题)。例6:重庆市某区地理环境偏僻,严重制约经济发展,丰富的花木产品只能在本地销售,区政府对该花木产品每投资x万元,所获利润为P=-150(x-30)2+10万元,为了响应我国西部大开发的宏伟决策,区政府在制定经济发展的10年规划时,拟开发此花木产品,而开发前后可用于该项目投资的专项资金每年最多50万元,若开发该产品,在前5年中,必须每年从专项资金中拿出25万元投资修通一条公路,且5年修通,公路修通后,花木产品除在本地销售外,还可运往外地销售,运往外地销售的花木产品,每投资x万元可获利润Q=-4950(50-x)2+1945(50-x)+308万元。(1)若不进行开发,求10年所获利润最大值是多少?(2)若按此规划开发,求10年所获利润的最大值是多少?(3)根据(1)、(2)计算的结果,请你用一句话谈谈你的想法。学生活动:给出题目后,让学生先自主分析。教师活动:在学生分析过程中,对学生进行学法引导,引导学生先了解二次函数的基本性质,并学会从实际问题中抽象出二次函数的模型,借助二次函数的性质来解决这类实际应用题。教师精析:(1)若不开发此产品,按原来的投资方式,由P=-150(x-30)2+10知道,只需从50万元专款中拿出30万元投资,每年即可获最大利润10万元,则10年的最大利润为M1=10×10=100万元。(2)若对该产品开发,在前5年中,当x=25时,每年最大利润是:P=-150(25-30)2+10=9.5(万元)则前5年的最大利润为M2=9.5×5=47.5万元设后5年中x万元就是用于本地销售的投资。4则由Q=-4950(50-x)+1945(50-x)+308知,将余下的(50-x万元全部用于外地销售的投资.才有可能获得最大利润;则后5年的利润是:M3=[-150(x-30)2+10]×5+(-4950x2+1945x+308)×5=-5(x-20)2+3500故当x=20时,M3取得最大值为3500万元。∴10年的最大利润为M=M2+M3=3547.5万元(3)因为3547.5>100,所以该项目有极大的开发价值。三、课堂小结1、让学生反思本节教学过程,归纳本节课复习过的知识点及应用。2、.归纳二次函数三种解析式的实际应用。3、如何将实际问题转化为二次函数问题,从而利用二次函数的性质解决最大利润问题等实际问题。
本文标题:第26章二次函数复习教案
链接地址:https://www.777doc.com/doc-2162177 .html