您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 第三章速度分析和叠加参考资料-1
115第三章速度分析和叠加3.0绪论一个声波记录代表地震波在地球传播速度作为深度函数的直接测量。另一方面,地震数据提供速度的一个间接测量。勘探地震学给第一年的学生介绍绝大多数速度术语,即,层速度,视速度,平均速度,均方根速度,瞬间速度,相速度、组速度,正常时差速度,叠加和偏移速度。什么我们从地震数据获得是产生最佳的叠加的速度。在层状介质的假设下,叠加速度与正常时差速度有关。这又是关系到均方根速度从其中平均和层速度可以得出。它是在地质层数之内的地震旅行的层速度。然而,如第2.0节所述,它是从界面引起的反射在二连贯层层速度之间的对比。有影响在一个地质岩石单位之内具有一定的岩石组成的层速度的几个因素。这些因素都属于:(1)孔隙形状(2)孔隙压力(3)孔隙流体饱和(4)围压(5)温度上述因素在实验室条件下都得到了广泛的研究。麻省理工学院和斯坦福大学岩石物理研究小组分别在Toksoz和Nut之下,(除了别的以外)目前正调查岩石的物理特性。这里,我将提到从一些早先实验室实验获得的一些个结果。如图3.0.1(Nur1981)是由于在一个石灰岩已形成的微裂116纹孔隙岩石样本围压功能的速度。随着围压的增加,P和S波速增加。这是一个众所周知的事实,因为引起围压的覆盖层速度通常随深度增加。一般,速度迅速地增加以小限制的压力和逐渐稳定以高限制的压力。原因是,当增加限制的压力,毛孔是闭合的,导致在速度的增加。然而,以非常高限制的压力,没有留出的孔隙。因此,在限制的压力的任何进一步增加不导致在速度的任何显著地增加。也从图3.0.1我们看见P波速比S波速更大不管限制的压力,这对于任何岩石类型是可靠。最终,在同一个图,我们看到在毛孔的流体饱和度的效果。饱和的岩石样品比干燥样品有更高的P波速在低限制的压力。另一方面,以高限制的压力,速度的两个类型接近同一大小。同样重要的是要注意,在饱和样品P波速度不会像在干燥的样品那样迅速改变,原因是流体是几乎不可压缩的。是否毛孔充满液体或不并没有对S波速度的影响。让我们审查速度作为限制的压力函数在从环绕了毛孔的沥青砂岩的一个样品情况下(图3.0.2,Nur,1981)。我们再次看到了随围压的增加速度增加的类似行为。在这个样品和那个在图3.0.1之间的重要区别是速度的大小的范围。有微裂纹的岩石比有被环绕的毛孔的岩石有一种更高的速度以特定限制的压力。其原因是关闭毛孔以微裂纹的形式比那些以圆形的形式在特定限制的压力下是容易。其中在上述影响岩石的速度的因素,最突出一个大概是限制的压力。这种压力型源自地质覆盖层的深度增加。所以一般真正的速度随深度的增加。然而,由于其他因素,例如孔隙压力,也许在某一层数之内有在速度的某一反向。图3.0.3(Sheriff,1976)是速度随不同岩性类型深度的变化。其中有一个比较小的覆盖层占领图表的低速度末117端的第三纪碎屑物。通常,它们开始以在1.5-2.5km/s之间的速度范围,如果它们是在或者靠近地表并逐渐增加到在4.5-5.5km/s之间在深度超过5km。具有高孔隙度碳酸盐占据了图形的中央部分,开始我们在大约3km/s和增加到几乎6km/s。另一方面,低孔隙度碳酸盐,有一个更大范围的变化速度。记得,如果没有关闭的孔隙,限制压力不可能导致在速度的增量。在本章,我们将讨论从地震数据估计的速度方式。速度估计要求数据被记录在非零炮检距。估计速度,这是CDP记录的优点之一,我们可以为非零炮检距校正,从而压缩了叠加剖面记录的数据量。对于一个单一的水平层的情况下,作为炮检距函数的旅行时间曲线是双曲线。在特定炮检距和在零炮检距之间的旅行时间时差称正常时差(NMO)。需要校正正常时差的速度称为正常时差速度。炮检距越大或介质速度越小,NMO越大。然而,同相轴越深NMO越小。事实证明,对于一个单一的水平层的情况,NMO速度等于层内的介质速度。在一个倾斜层的情况下,NMO速度等于介质速度除以倾角的余弦。当在3D观看,方位角角度成为一个另外的因素。作为炮检距函数的旅行时间从一系列的平面水平的等速层由双曲线近似。这种近似破坏性在大炮检距。NMO速度,在水平层状地层的情况下,等于rms速度下降到下一层的研究范围。在任意倾角层组成的一种介质,旅行时间等式变得复杂。然而,在实践中,只要倾角小,我们仍然可以作出双曲线的假设。当我们有任意形状的层数边界时打破了双曲线的假设。NMO和叠加速度之间存在的差异通常在实践中被忽略的。NMO速度根据小排列双曲线旅行时间,而叠加的速度根据双曲线那最好适合在整个排列长度的数据。但是,叠加速度和NMO校正速118度通常被认为是等价的。常规的速度分析是基于双曲线假设。我们将讨论到速度分析的各种方法。双曲线旅行时间方程在t²-x²平面是线性的。零炮检距时间和一个被测量的反射界面的NMO速度从截距时间和线的斜率的反旅行时间拾取在t²对x²平面上绘制的最佳的适合。另一个估计NMO速度的方法是应用NMO校正到CDP道集使用恒定的速度值的范围并肩并肩显示它们。然后通过观察拉平由于NMO校正可以选择各种同相轴的速度。轮流地,我们可能采取一定数量的相邻CDP道集并且使用恒定的速度值的范围叠加它们。这是所谓的恒定的速度叠加(CVS)剖面。速度函数通过观察最佳的叠加的表现拾取。最常用的速度分析技术根据计算所谓的速度谱画面。这个想法是显示了速度与双向垂直零炮检距时间图的一些信号一致性的测量。在这个问题的开创性工作是由Taner和Koehler完成(1969)。根本原则是扫描沿着一定宽度的双曲线门的CDP道集,哪些取决于数据的主周期,并计算信号的相干性。有几个相干性的测量,即从在门之内所有道的振幅的叠加,标准化和非标准化的相关性,能源标准化互相关的总和,并且被定义的相似性作为叠加输出能量对输入道能量的总和的比率。以等高线图或装门的行的形式绘图,相干测量被显示,从哪些在速度与时间剖面可以得到最好的猜测。关于速度谱的几个实用问题将详细讨论,例如速度扫描,时间门长度,部分的叠加,CDP求和,切除考虑,二次抽样,带通滤波和AGG。我们将讨论这些问题,并且展示它们的角色使用速度分析模型CDP道集。有影响速度估计的几个因素。不足的电缆长产生不可靠的速度估计,119特别是在具有一种高速度或一个深反射界面的情况,覆盖次数和信噪比确定在速度谱图的相干峰顶的质量。相干测量方法的选择会影响拾取过程。例如,一个微弱的反射界面的速度拾取最好从正常化的互相关获得,模型CDP道集将被用于详细研究这些的因素。众所周知,反射旅行时间不是完全双曲线的甚至在层状介质。一个完美的双曲线的旅行时间偏差的主要起因是在静态的变化形式近地表的影响。这个作用特别是扭曲反射双曲线,当有严厉表面高程变化时或当风化层基底水平地变化时。即使我们试图为野外静力学改正,依然保持沿双曲线旅行时间轨迹的剩余的变化。剩余静校正,因此必须应用于叠加之前CDP道集。这在一个初步NMO更正以后做使用区域速度函数或来自沿剖面的一系列初步速度分析信息。下面的剩余静校正,速度分析被重复为了更新速度拾取,然后用于叠加。我们与表面一致性剩余静校正计算的理论基础一起将展示剩余静校正各种各样的阶段。有时,我们需要详细确定在特定的反射界面速度的变化。层速度分析提供在横向方向上的速度变化沿特殊兴趣的层。使用真实数据的例子,我们将讨论这种方法的各种实际问题。在第4章我们将介绍确定的偏移速度波动理论方法。应该记住叠加和偏移需要的速度不一定是相同的。实际上,在一个简单的倾斜的反射界面情况下,叠加速度是介质速度除以倾角的余弦,而偏移速度是在倾斜同相轴上面的介质速度。换句话说,叠加速度对倾角是敏感的,而偏移速度不是。此外,叠加速度通常大于偏移速度。为了从叠加速度获得偏移速度,我们必须为倾角校正,就事实而论我们需要一个偏移叠加剖面,如果它包含120倾斜反射界面,这个做法不一定是容易的一个。波动理论方法,另一方面,产生为倾角已经被校正的偏移速度,这个方法在第4.章讨论。3.1.正常时差(NMO)让我们先从一个简单的水平层例子出发,如图3.1.1所示。在给定的中点位置M,我们将计算沿射线路径的旅行时间从炮点位置S到深度点D和回到接收位置G。使用勾股定理的规则,作为炮检距函数的旅行时间方程由下式给出1.3/02222vxtxt这里x是震源和接收点位置之间的炮检距间隔和v是在反射界面上方介质的速度。注意深度点D投射到表面的中点M不谋而合。当反射界面不是水平的,这不会是实际情形。方程(3.1)描述了在双向时间对炮检距平面的一条双曲线。例子在图3.1.2提供代表共中心点(CMP)的道集,它也代表共深度点(CDP)道集,因为所有射线路径与来自同一地下深度点D反射每个炮检对相关。炮检距范围在图3.1.1是0-3500m,用道间距50m。反射界面上方介质速度是2264m/s。所有在这CDP道集的道代表来自同一深度点的反射。在特定炮检距双程时间t(x)和零炮检距双程时间t(0)之间的差,取决于炮检距值x和在反射界面之上的介质速度v,这个差称正常时差(NMO)。提供了常规速度计算技术的基础。参见方程(3.1),人们知道炮检距x和双向时间t(x)和t(0)可以计算速度。一旦我们用双曲线时差方程(3.1)估计速度,如图3.1.3所显示,然后我们可以为炮检距校正。在对NMO校正的道集的道进行求和以获得在特定的CDP位置的叠加道。在介入双曲线时差校正数字的做法在图3.1.4121被说明。想法是从在原始的CDP道集的振幅值A找到在NMO校正的道集A´的振幅值。给出数量t(0),x和v(NMO),我们从式(3.1)计算t(x)。让我们假设,它结果是1003ms。如果抽样间隔是4ms,这次相当于250.75样点指数。因此我们必须使用在邻居整数样点值的振幅计算此时振幅值。一般,利用四个样点的二次插值法,使用在每个实际t(x)值的二边值。这个做法在图3.1.4被说明。NMO校正由t(x)和t(0)之间的区别给出:2.3101002tvxttxttNMONMO使用式(3.2),让我们采用一个实际速度函数和计算二个不同炮检距值的时差校正,结果列于表3.1.1。t(0)v(NMO)炮检距x的Δt(NMO)(s)(s)(m/s)1000m2000m0.2520000.3090.7800.525000.1400.443130000.0540.201235000.0200.080440000.0080.031速度函数是随深度增加的一个现实类型(记住v(NMO)值是深度双向时间t(0)的函数)。从表3.1.1,我们看见NMO随炮检距增加并且随深度减少。NMO对于大速度值也是小。122如前面提到,如果正确速度用于NMO等式,反射双曲线可以校正炮检距,参见图3.1.5,我们看见我们使用高于水平反射界面的实际介质速度(2264m/s)的速度双曲线不完全地被拉平,这称校正不足。另一方面,使用一低速引起过校。实际上,这个图说明常规速度分析的基础。在式(3.1)使用一定数量的常数速度值并且应用NMO校正于输入CDP道集。速度最好铺平反射双曲线是被用于的速度为NMO正确地校正,并且叠加在道集的道。此外,我们知道在一个简单水平反射界面的情况下,这速度与在反射界面之上介质的速度也是相等的。在一个水平层状地层NMO现在让我们考虑由水平等速层组成一个介质的情况下如图3.1.6所显示。每层有一定厚度可以根据双向零炮检距时间来定义。层数有层速度v(1),v(2),…,v(N),这里N是层数。考虑从震源S的射线路径到深度点D回到接收点R与炮检距x相关在中点位置M。TanerandKoehler(1969)定义旅行时间等式如下:3.363422102xCxCxCCxt这里2120/1,0rmsvCtC,和32,CC···是复杂的高次项。此外,rms速度下降到位于反射界面的深度点D:4.301122iNiirmstvtv方程(3.1)和(3.4)的比较表明,对于N
本文标题:第三章速度分析和叠加参考资料-1
链接地址:https://www.777doc.com/doc-2183061 .html