您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 人事档案/员工关系 > 第三讲数论专题-学生版
遥行教育预初试讲讲义宋老师1第三讲数论专题重点知识点:一、整除性质①如果自然数a为M的倍数,则ka为M的倍数。(k为正整数)②如果自然数a、b均为M的倍数,则a+b,a-b均为M的倍数。③如果a为M的倍数,p为M的约数,则a为p的倍数。④如果a为M的倍数,且a为N的倍数,则a为[M,N]的倍数。二、整除特征1.末位系列(2,5)末位(4,25)末两位(8,125)末三位2.数段和系列3、9各位数字之和——任意分段原则(无敌乱切法)33,99两位截断法——偶数位任意分段原则3.数段差系列11整除判断:奇和与偶和之差余数判断:奇和-偶和(不够减补十一,直到够减为止)7、11、13—三位截断法:从右往左,三位一隔:整除判断:奇段和与偶段和之差余数判断:奇段和-偶段和(不够减则补,直到够减)三、整除技巧:遥行教育预初试讲讲义宋老师21.除数分拆:(互质分拆,要有特征)2.除数合并:(结合试除,或有特征)3.试除技巧:(末尾未知,除数较大)4.同余划删:(从前往后,剩的纯粹)5.断位技巧:(两不得罪,最小公倍)四、约数三定律约数个数定律:(指数+1)再连乘约数和定律:(每个质因子不同次幂相加)再连乘约数积定律:自身n(n=约数个数÷2)遥行教育预初试讲讲义宋老师3例题:【例1】2025的百位数字为0,去掉0后是225,225×9=2025。这样的四位数称为“零巧数”,那么所有的零巧数是_____。【巩固】某校人数是一个三位数,平均每个班级36人,若将全校人数的百位数与十位数对调,则全校人数比实际少180人,那么该校人数最多可以达到____人。【例2】若两个自然数的平方和是637,最大公约数与最小公倍数的和为49,则这两个数是多少?【巩固】两个两位数,它们的最大公约数是9,最小公倍数是360,这两个两位数分别是_______。【例3】一个两位数,数字和是质数。而且,这个两位数分别乘以3,5,7之后,得到的数的数字和都仍为质数。满足条件的两位数为_____。遥行教育预初试讲讲义宋老师4【例4】对四位数abcd,若存在质数p和正整数k,使a×b×c×d=pk,且a+b+c+d=pp-5,求这样的四位数的最小值,并说明理由。【例5】已知,23!=2585a01b738c849766de000其中a,b,c,d,e表示五个互不相同的偶数数字,且c>b求a,b,c,d,e分别是多少?余数问题一、带余除法的定义及性质:一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r,0≤r<b;我们称上面的除法算式为一个带余除法算式。这里:(1)当0r时:我们称a可以被b整除,q称为a除以b的商或完全商(2)当0r时:我们称a不可以被b整除,q称为a除以b的商或不完全商一个完美的带余除法讲解模型:如图,这是一堆书,共有a本,这个a就可以理解为被除数,现在要求按照b本一捆打包,那么b就是除数的角色,经过打包后共打包了c捆,那么这个c就是商,最后还剩余d本,这个d就是余数。这个图能够让学生清晰的明白带余除法算式中4个量的关系。并且可以看出余数一定要比除数小。二、三大余数定理:1.余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。例如:23,19除以5的余数分别是3和4,故23+19=42除以5的余数等于3+4=7除以5的余数,即2.遥行教育预初试讲讲义宋老师52.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2.3.同余定理若两个整数a、b被自然数m除有相同的余数,那么称a、b对于模m同余,用式子表示为:a≡b(modm),左边的式子叫做同余式。同余式读作:a同余于b,模m。由同余的性质,我们可以得到一个非常重要的推论:若两个数a,b除以同一个数m得到的余数相同,则a,b的差一定能被m整除用式子表示为:如果有a≡b(modm),那么一定有a-b=mk,k是整数,即m|(a-b)三、弃九法原理:任何一个整数模9同余于它的各数位上数字之和。以后我们求一个整数被9除的余数,只要先计算这个整数各数位上数字之和,再求这个和被9除的余数即可。例:检验算式1234189818922678967178902889923四、中国剩余定理:一个自然数分别除以3,5,7后,得到三个余数分别为2,3,2.那么我们首先构造一个数字,使得这个数字除以3余1,并且还是5和7的公倍数。先由5735,即5和7的最小公倍数出发,先看35除以3余2,不符合要求,那么就继续看5和7的“下一个”倍数35270是否可以,很显然70除以3余1类似的,我们再构造一个除以5余1,同时又是3和7的公倍数的数字,显然21可以符合要求。最后再构造除以7余1,同时又是3,5公倍数的数字,45符合要求,那么所求的自然数可以这样计算:270321245[3,5,7]233[3,5,7]kk,其中k是从1开始的自然数。也就是说满足上述关系的数有无穷多,如果根据实际情况对数的范围加以限制,那么我遥行教育预初试讲讲义宋老师6们就能找到所求的数。例如对上面的问题加上限制条件“满足上面条件最小的自然数”,那么我们可以计算2703212452[3,5,7]23得到所求如果加上限制条件“满足上面条件最小的三位自然数”,我们只要对最小的23加上[3,5,7]即可,即23+105=128。例题:【例1】一列数,前几个数是1,3,8,21,55,144,377,987,…,通过观察中间数的3倍都是它前后相邻2个数之和,求:这列数中的第2011个数除以6所得的余数是几?【巩固】有一串数:5,8,13,21,34,55,89,…,其中第一个数是5,第二个数是8,从第三个数起,每个数恰好是前两个数的和。那么在这串数中,第2011个数被3除后所得余数是几?【例2】有一个整数,用它去除70,110,160所得到的3个余数之和是50,那么这个整数是______。【例3】一个自然数除429、791、500所得的余数分别是a+5、2a、a,求这个自然数和a的值。【巩固】学前班有几十位小朋友,老师买来176个苹果,216块饼干,324粒糖,并将它们尽可能地平均分给每位小朋友。余下的苹果、饼干、糖的数量之比是1∶2∶3,问学前班有多少位小朋友?【例4】一个自然数被7,8,9除的余数分别是1,2,3,并且三个商数的和是570,求这个自然数。遥行教育预初试讲讲义宋老师7【拓展】一个大于10的自然数,除以5余3,除以7余1,除以9余4,那么满足条件的自然数最小为____。【例5】已知a=20082008…2008,问:a除以13所得的余数是______。2008个2008课后练习1、(全国小学数学奥林匹克试题)两数相除,商4余8,被除数、除数、商数、余数四数之和等于415,则被除数是_______.2、已知2008被一些自然数去除,所得的余数都是10,那么这样的自然数共有多少个?3、(全国小学数学奥林匹克试题)六张卡片上分别标上1193、1258、1842、1866、1912、2494六个数,甲取3张,乙取2张,丙取1张,结果发现甲、乙各自手中卡片上的数之和一个人是另—个人的2倍,则丙手中卡片上的数是________.4、求12644319的余数5、已知60,154,200被某自然数除所得的余数分别是1a,2a,31a,求该自然数的值.遥行教育预初试讲讲义宋老师86、有三所学校,高中A校比B校多10人,B校比C校多10人.三校共有高中生2196人.有一所学校初中人数是高中人数的2倍;有一所学校初中人数是高中人数的1.5倍;还有一所学校高中、初中人数相等.三所学校总人数是5480人,那么A校总人数是________人.6、三个质数的乘积恰好等于它们的和的7倍,求这三个质数.7、有一个大于1的整数,除45,59,101所得的余数相同,求这个数.8、将1至2008这2008个自然数,按从小到大的次序依次写出,得一个多位数:1234567891011121320072008,试求这个多位数除以9的余数.9、在7进制中有三位数abc,化为9进制为cba,求这个三位数在十进制中为多少?10、在几进制中有12512516324?11、在大于1000的整数中,找出所有被34除后商与余数相等的数,那么这些数的和是多少?
本文标题:第三讲数论专题-学生版
链接地址:https://www.777doc.com/doc-2183819 .html