您好,欢迎访问三七文档
-1-第二章行列式习题1.9.134782695.217986354.987654321..(134782695)00000420410,.(217986354)01001344518,.(987654321)01234567836,决定以下级排列的逆序数,从而确定它们的奇偶性;;解.偶排列;偶排列;偶排列。①②③①②③2.,1).1274569;2).12548971).3,83,85.8,32).3,6(13ikikikikikik选择使得:成偶排列成奇排列.解.在排列中缺少;取,所得排列的逆序数为由于交换改变排列的奇偶性,于是取;所得排列为偶排列。取,2564897)5;满足条件。(1,2)(1,5)(4,3)3.1243525341.12435214352543125341.写出排列变成排列的那些对换。解这种过程不唯一,如:4.(1)(2)21.(1)((1)(2)21)0122124,41.42,43nnnnnnnnnnnkknkk决定排列的逆序数,并讨论它的奇偶性。解逆序数为:显然有偶排列奇排列121121115.,()(1)(2)innnniiiiinixxxxxkxxxxxnxxnxxnxnn如果排列的逆序数为那么排列的逆序数为多少?解.因为比大的数有个,所以在两个排列中由与比它大的各数构成的逆序数的和为:于是在两个排列中由构成的逆序数总数为:121121(1)212,(1).2nnnnnnxxxxkxxxxnnk所以当的逆序数为时的逆序数为:233142561465324314516625(431265)012201233142561465(452316)002243243145166256.6,(1)(1)1;(1)(1)1.aaaaaaaaaaaaaaaaaaaaaaaa在级行列式中这两项应有什么符号?解.的符号为的符号为-2-23123341123324414233142122334417.4,3,,,,1,2,41,2,4,1324;.ijkaaaaaijkijkijkaaaaaaaaaaaa写出级行列式中所有含有负号并且包含因子的项。解.设所求项为,则列标为奇排列,且为取自中的不同值。令于是排列是奇排列由于“对换改变排列的奇偶性”,于是排列4312与2341是奇排列。那么所求为,,(1)(1)(,1,2,,2,1)22(28.0001010000100020002002001).2).3)..010000011000000000000.1).(1)(1)(1)!;2).(1)nnnnnnnnnnnnnn,按定义计算行列式:解非零项仅有一项,其符号为,于是原行列式值为非零项也仅有一项,其符号为34,)11(2)(1)(2)(1)(1,2,,2,1,)22(1),(1)!;3).(1)(1);(1)!.nnnnnnnnnnn,,n-1,1原行列式值为非零项仅有一项,其符号为于是行列式值为123451234512345121212123453453459.0.000000000.,1.2.3.4.5jjjjjaaaaabbbbbccddeeaaaaajjjjjj按行列式定义证明:解此行列式的一般项为列标为取自中的不同值,于是中至少有一项为0,故行列式的每一项均为0,所以行列式等于0.所证成立。43444321211110.()321111.()2221.xxxfxxxxxfxxxxxxxxx由行列式定义计算中与的系数。解由行列式定义知:中仅有为含的项,故的系数为;同理的系数为-3-121212()1212()1211111111.0111(1)1(1)1nnnjjjjjnjnjjjnaaajjjjjj由证明奇偶排列各半。证明:由题意行列式展开中的任一项的绝对值为1,而行列式的值为零,说明带正号的项与带负号的项数数目相同。而各项的符号为:为奇排列为偶排列于是奇偶排列各半。212111121111121112.11()1,,1).()(1)2)..1).()1nnnnnnnnxxxaaapxaaaaaapxnpxxa设其中是互不相同的数,由行列式定义说明是一个次多项式;由行列式性质求行列式的根。解将按第一行展开可知的系数为:22111222222211112112111,,()(1)2).(1,2,,1)()0()(1)()1,,.nnnnnnninaaaaaaaaaaapxnxainpxpxnpxnaaa这是一个范德蒙行列式,由于是互不相同的数,故此行列式不为零。所以是一个次多项式。由范德蒙行列式的性质可知:当取时,又由于是一个次多项式,于是有个不同的根-4-322322121213.24642732724610032746100274612731).10145434431014100443814100143100814114323427216213421006215421003215421321010467681161000100768111610010025882945881294llllllllll计算下列行列式:5131232323311629410.02942212).222()122102()02()2()(())2().131116111131163113).61131613111136113xyxyxyyxyyxyhhyxyxlllxyxyxxyxyxhhxyxyxyxyxyyxxyxxxyyxyxyxyxyxyxyyxyxy1111111113110200648.113100201113000212341023412341234113234110341134101134).1010102223412104121412022211141231012311230111004221022240160.11111111111115).11111111xxy123421243001100111111110000111111111110001101010(00000)().001011101xxhhxxxyhhyyyyyllxxyxyxyxyxyllxyy按拉普拉斯定理展开,取定前两行-5-111111111222222221111111111111111222222222222222211111222214.2.bccaababcbccaababcbccaababcbccaabccaabbcaabbccaabccaabbcaabbccaabccaabbcaabcaabbcaacaabbcaab证明:证明:1111111111112222222222222cabbcaabccaacabbcaabcbcaacabbcaabc121411121314122321222315.121411201211),2)321.00210140003.1)1210210110120216,(1)0210,0010,(1)0020;003003003000214114124(1)02112,0216,(1)001003003003AAAAAAA写出下列行列式的全部代数余子式:解243231323334414243441112131210,0020;00021411412412112115,(1)0216,0113,0120;0030030030002141141241211217,0210,0111,0122.0210210010022131322).7,12,1404AAAAAAAAAAAA21222331321112123;6,4,011404111212111;5,5,5.01213132AAAAAA-6-324116.1111111111112113011501151)112250114000143210130012111111111111222111111121121121113332.21113123110210003322201333312010111022222111174102333012hhhh计算下列行列式:.;)按第三列展开133273413().23231201214135121351213512201210121401214012143).13512201210161145001101933121331210121657008174121035210350710590041219135120121460011019000631110002857hhhh35711128483;111011101110002213501114112011223515222110134).018321033322232322255110120003016522032152130200322215521133(1618).24248-7-1111111121212221217.00000000000000001).(1)0000000000000000(1)(1);2).nnnnnnnnnnnnnxyxyyxyxxyxyxyxyyyxxxyxxyyxyababababababababab计算下列行列式:按第一列展开111211212211121112111212122212222222121221;2?()3nnnnnnnnnnnnnnnnababnDabnDabababababbababaabababababbababaababnabababbababaaba当时,行列式值当时,自己算!当时,111121222211120000(0);nnnnnnnbbaaabbbaaabbbbbaaabb显然时,也为0-8-1212121212122212121000001000001003).0000000000100000100000100100010000nnnnnnnnnnmmxmxxxxmxmxmxxxxxmxxmxxxxmmmmxxxxxx做这样的一个加边易检验知等号成立21111222222001001000001001100000100000000001010100001000000010000001000001000(1)0010nnnnnxxmnxmxxxxmxxmmxxxmxmxmm按拉普拉斯定理展开选定前行,未写出项均为1111(1)(1);012221111222220004).(2)(2)!;223220102,3,2222002nnnnniiimxmmllninnn按第二行展开即有11123112311100001000(1)!5)(1).0220002200
本文标题:第二章行列式
链接地址:https://www.777doc.com/doc-2187471 .html