您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 第8讲一元二次方程及应用
第八讲一元二次方程及应用【基础知识回顾】一、一元二次方程的定义:1、一元二次方程:含有个未知数,并且未知数最高次数是2的方程2、一元二次方程的一般形式:其中二次项是一次项是,是常数项【名师提醒:1、在一元二次方程的一般形式要特别注意强调a≠0这一条件2、将一元二次方程化为一般形式时要按二次项、一次项、常数项排列,并一般首项为正】二、一元二次方程的常用解法:1、直接开平方法:如果ax2=b则X2=X1=X2=2、配方法:解法步骤:①、化二次项系数为即方程两边都二次项系数,②、移项:把项移到方程的边③、配方:方程两边都加上把左边配成完全平方的形式④、解方程:若方程右边是非负数,则可用直接开平方法解方程3、公式法:如果方程ax2+bx+c=0(a≠0)满足b2-4ac≥0,则方程的求根公式为4、因式分解法:一元二次方程化为一般形式后,如果左边能分解因式,即产生A.B=0的形式,则可将原方程化为两个方程,即、从而得方程的两根【名师提醒:一元二次方程的四种解法应根据方程的特点灵活选用,较常用到的是法和法】三、一元二次方程根的判别式关于X的一元二次方程ax2+bx+c=0(a≠0)根的情况由决定,我们把它叫做一元二次方程根的判别式,一般用符号表示①当时,方程有两个不等的实数根②当时,方程看两个相等的实数根③当时,方程没有实数根【名师提醒:在使用根的判别式解决问题时,如果二次项系数中含有字母一定要保证二次项系数】四、一元二次方程根与系数的关系:关于X的一元二次方程ax2+bx+c=0(a±0)有两个根分别为X1、X2则x1+x2=x1x2=五、一元二次方程的应用:解法步骤同一元一次方程一样,仍按照审、设、列、解、验、答六步进行常见题型1、增长率问题:连续两率增长或降低的百分数a(1+x)2=b2、利润问题:总利润=×或总利润=—3、几何图形的面积、体积问题:按面积、体积的计算公式列方程【名师提醒:因为通常情况下一元二次方程有两个根,所以解一元二次方程的应用题一定要验根,检验结果是否符合实际问题或是否满足题目中隐含的条件】【重点考点例析】考点一:一元二次方程的解方程有两个实数跟,则例1(牡丹江)若关于x的一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,则2013-a-b的值是()A.2018B.2008C.2014D.2012对应训练1.(黔西南州)已知x=1是一元二次方程x2+ax+b=0的一个根,则代数式a2+b2+2ab的值是.1.1考点二:一元二次方程的解法例2(宁夏)一元二次方程x(x-2)=2-x的根是()A.-1B.2C.1和2D.-1和2例3(佛山)用配方法解方程x2-2x-2=0.例4(兰州)解方程:x2-3x-1=0.对应训练2.(陕西)一元二次方程x2-3x=0的根是.3.(白银)现定义运算“★”,对于任意实数a、b,都有a★b=a2-3a+b,如:3★5=32-3×3+5,若x★2=6,则实数x的值是.4.(山西)解方程:(2x-1)2=x(3x+2)-7.考点三:根的判别式的运用例5(乐山)已知关于x的一元二次方程x2-(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB,AC的长是这个方程的两个实数根.第三边BC的长为5,当△ABC是等腰三角形时,求k的值.对应训练5.(泰州)下列一元二次方程中,有两个不相等实数根的方程是()A.x2-3x+1=0B.x2+1=0C.x2-2x+1=0D.x2+2x+3=06.(乌鲁木齐)若关于x的方程式x2-x+a=0有实根,则a的值可以是()A.2B.1C.0.5D.0.257.(六盘水)已知关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根,则k的取值范围是()A.k<-2B.k<2C.k>2D.k<2且k≠18.(北京)已知关于x的一元二次方程x2+2x+2k-4=0有两个不相等的实数根.(1)求k的取值范围;(2)若k为正整数,且该方程的根都是整数,求k的值.考点四:一元二次方程的应用例6(连云港)小林准备进行如下操作实验;把一根长为40cm的铁丝剪成两段,并把每一段各围成一个正方形.(1)要使这两个正方形的面积之和等于58cm2,小林该怎么剪?(2)小峰对小林说:“这两个正方形的面积之和不可能等于48cm2.”他的说法对吗?请说明理由.对应训练9.(重庆)随着铁路客运量的不断增长,重庆火车北站越来越拥挤,为了满足铁路交通的快速发展,该火车站去年开始启动了扩建工程,其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.(1)求甲、乙两队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程,在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过1500万元?(甲、乙两队的施工时间按月取整数)【聚焦山东中考】1.(威海)已知关于x的一元二次方程(x+1)2-m=0有两个实数根,则m的取值范围是()A.m≥-34B.m≥0C.m≥1D.m≥22.(日照)已知一元二次方程x2-x-3=0的较小根为x1,则下面对x1的估计正确的是()A.-2<x1<-1B.-3<x1<-2C.2<x1<3D.-1<x1<03.(滨州)对于任意实数k,关于x的方程x2-2(k+1)x-k2+2k-1=0的根的情况为()A.有两个相等的实数根B.没有实数根C.有两个不相等的实数根D.无法确定4.(潍坊)已知关于x的方程kx2+(1-k)x-1=0,下列说法正确的是()A.当k=0时,方程无解B.当k=1时,方程有一个实数解C.当k=-1时,方程有两个相等的实数解D.当k≠0时,方程总有两个不相等的实数解.5.(东营)要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,则参赛球队的个数是()A.5个B.6个C.7个D.8个6.(滨州)一元二次方程2x2-3x+1=0的解为.7.(哈尔滨)某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为.8.(临沂)对于实数a,b,定义运算“﹡”:a﹡b=22()()aabababaab.例如4﹡2,因为4>2,所以4﹡2=42-4×2=8.若x1,x2是一元二次方程x2-5x+6=0的两个根,则x1﹡x2=.9.(日照)已知,关于x的方程x2-2mx=-m2+2x的两个实数根x1、x2满足|x1|=x2,求实数m的值.10.(菏泽)已知:关于x的一元二次方程kx2-(4k+1)x+3k+3=0(k是整数).(1)求证:方程有两个不相等的实数根;(2)若方程的两个实数根分别为x1,x2(其中x1<x2),设y=x2-x1,判断y是否为变量k的函数?如果是,请写出函数解析式;若不是,请说明理由.11.(淄博)关于x的一元二次方程(a-6)x2-8x+9=0有实根.(1)求a的最大整数值;(2)当a取最大整数值时,①求出该方程的根;②求2x2-2327811xxx的值.12.(泰安)某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元销售销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1250元,问第二周每个旅游纪念品的销售价格为多少元?12.解:由题意得出:200×(10-6)+(10-x-6)(200+50x)+[(4-6)(600-200-(200+50x)]=1250,即800+(4-x)(200+50x)-2(200-50x)=1250,整理得:x2-2x+1=0,解得:x1=x2=1,∴10-1=9,答:第二周的销售价格为9元.13.(威海)要在一块长52m,宽48m的矩形绿地上,修建同样宽的两条互相垂直的甬路.下面分别是小亮和小颖的设计方案.(1)求小亮设计方案中甬路的宽度x;(2)求小颖设计方案中四块绿地的总面积(友情提示:小颖设计方案中的与小亮设计方案中的取值相同)13.解:(1)根据小亮的设计方案列方程得:(52-x)(48-x)=2300解得:x=2或x=98(舍去)∴小亮设计方案中甬道的宽度为2m;(2)作AI⊥CD,HJ⊥EF,垂足分别为I,J,∵AB∥CD,∠1=60°,∴∠ADI=60°,∵BC∥AD,∴四边形ADCB为平行四边形,∴BC=AD由(1)得x=2,∴BC=HE=2=AD在Rt△ADI中,AI=2sin60°=3,∴小颖设计方案中四块绿地的总面积为52×48-52×2-48×2+(3)2=2299平方米.【备考真题过关】一、选择题1.(新疆)方程x2-5x=0的解是()A.x1=0,x2=-5B.x=5C.x1=0,x2=5D.x=02.(安顺)已知关于x的方程x2-kx-6=0的一个根为x=3,则实数k的值为()A.1B.-1C.2D.-23.(鞍山)已知b<0,关于x的一元二次方程(x-1)2=b的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.有两个实数根4.(昆明)一元二次方程2x2-5x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定5.(珠海)已知一元二次方程:①x2+2x+3=0,②x2-2x-3=0.下列说法正确的是()A.①②都有实数解B.①无实数解,②有实数解C.①有实数解,②无实数解D.①②都无实数解6.(十堰)已知关于x的一元二次方程x2+2x-a=0有两个相等的实数根,则a的值是()A.4B.-4C.1D.-17.(宜宾)若关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的取值范围是()A.k<1B.k>1C.k=1D.k≥08.(大连)若关于x的方程x2-4x+m=0没有实数根,则实数m的取值范围是()A.m<-4B.m>-4C.m<4D.m>49.(咸宁)关于x的一元二次方程(a-1)x2-2x+3=0有实数根,则整数a的最大值是()A.2B.1C.0D.-110.(丽水)一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是()A.x-6=-4B.x-6=4C.x+6=4D.x+6=-411.(兰州)用配方法解方程x2-2x-1=0时,配方后得的方程为()A.(x+1)2=0B.(x-1)2=0C.(x+1)2=2D.(x-1)2=2二、填空题12.(黑龙江)若x=1是关于x的一元二次方程x2+3mx+n=0的解,则6m+2n=.13.(常州)已知x=-1是关于x的方程2x2+ax-a2=0的一个根,则a=.14.(天津)一元二次方程x(x-6)=0的两个实数根中较大的根是.15.(温州)方程x2-2x-1=0的解是。16.(广安)方程x2-3x+2=0的根是.17.(张家界)若关于x的一元二次方程kx2+4x+3=0有实根,则k的非负整数值是.18.(沈阳)若关于x的一元二次方程x2+4ax+a=0有两个不相等的实数根,则a的取值范围是.19.(巴中)方程x2-9x+18=0的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为.20.(绵阳)已知整数k<5,若△ABC的边长均满足关于x的方程x2-3kx+8=0,则△ABC的周长.三、解答题21.(无锡)解方程:x2+3x-2=0.。22.(杭州)当x满足条件13311(4)(4)23xxxx时,求出方程x2-2x-4=0的根.23.(南充)关于x的一元二次方程为(m-1)x2-2mx+m+1=0.(1)求出方程的根;(2)m为何
本文标题:第8讲一元二次方程及应用
链接地址:https://www.777doc.com/doc-2199496 .html