您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 【解析版】宁波市南三县2018-2019学年八年级上期末数学试卷
浙江省宁波市南三县2019-2019学年八年级上学期期末数学试卷一、选择题(每小题3分,共36分)1.在平面直角坐标系中,点M(﹣2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限2.下列长度的三条线段能组成三角形的是()A.1,2,4B.4,5,9C.4,6,8D.5,5,113.若x>y,则下列式子错误的是()A.x﹣1>y﹣1B.﹣3x>﹣3yC.x+1>y+1D.>4.不等式17﹣3x>2的正整数解的数量是()A.2个B.3个C.4个D.5个5.已知:如图,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A.∠A与∠D互为余角B.∠A=∠2C.△ABC≌△CEDD.∠1=∠26.已知正比例函数y=kx(k≠0)的图象经过点(1,﹣2),则这个正比例函数的解析式为()A.y=2xB.y=﹣2xC.D.7.已知△ABC中,∠A=∠B=∠C,则它的三条边之比为()A.1:1:B.1::2C.1::D.1:4:18.一副三角板如图叠放在一起,则图中∠α的度数为()A.75°B.60°C.65°D.55°9.已知点(﹣4,y1),(2,y2)在直线y=﹣+b上,则y1与y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较10.如图,一次函数y1=﹣x+7与正比例函数y2=x的图象交于点A,若y1>y2,则自变量x的取值范围是()A.x>3B.x<3C.x>4D.x<411.如图,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是边AC上一点,若AE=2,则EM+CM的最小值为()A.B.3C.2D.412.如图,已知A1、A2、A3、…、An、An+1是x轴上的点,且OA1=A1A2=A2A3=…=AnAn+1=1,分别过点A1、A2、A3、…、An、An+1作x轴的垂线交直线y=2x于点B1、B2、B3、…、Bn、Bn+1,连接A1B2、B1A2、A2B3、B2A3、…、AnBn+1、BnAn+1,依次相交于点P1、P2、P3、…、Pn.△A1B1P1、△A2B2P2、△AnBnPn的面积依次记为S1、S2、S3、…、Sn,则Sn为()A.B.C.D.二、填空题(每小题3分,共24分)13.请用不等式表示“x的2倍与3的和不大于1”:__________.14.已知点A的坐标为(﹣2,3),则点A关于x轴的对称点A1的坐标是__________.15.“在△ABC中,若∠B=∠C,则AB=AC”的逆命题是__________.16.一次函数y=﹣5x+3的图象不经过第__________象限.17.一次函数y=2x﹣1的图象与x轴的交点坐标是__________.18.如图,∠AOC=∠BOC,点P在OC上,PD⊥OA于点D,PE⊥OB于点E,若OD=8,OP=10,则PE=__________.19.如图,在△ABC中,∠C=2∠B,D是BC上的一点,且AD⊥AB,点E是BD的中点,连结AE.若BD=13,则AC=__________.20.如图,平面直角坐标系中,已知直线y=x上一点P(1,1),C为y轴上一点,连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线y=x交于点A,且BD=2AD,连接CD,直线CD与直线y=x交于点Q,则点Q的坐标为__________.三、解答题(共60分)21.解下列不等式(组),并把解表示在数轴上.(1)2(x+1)≥3x﹣4(2).22.已知,如图,点A、D、B、E在同一直线上,AC=EF,AD=BE,∠A=∠E,(1)求证:△ABC≌△EDF;(2)当∠CHD=120°,求∠HBD的度数.23.如图,已知一次函数y=2x+a与y=﹣x+b的图象都经过点A(﹣2,0)且与y轴分别交于B,C两点.(1)分别求出这两个一次函数的解析式;(2)求△ABC的面积.24.某文具店准备拿出1000元全部用来购买甲、乙两种钢笔,若甲种钢笔每支10元,乙种钢笔每支5元,考虑到顾客需求,要求购进乙种钢笔的数量不少于甲种钢笔数量的6倍,且甲种钢笔数量不少于23支.若设购进甲种钢笔x支.(1)该文具店共有几种进货方案?(2)若文具店销售每支甲种钢笔可获利润3元,销售每支乙种钢笔可获利润2元,在第(1)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?25.如图,在△ABC中,BE⊥AC于点E,CF⊥AB于点F,D为BC边的中点,连接DE,DF.(1)求证:DE=DF;(2)若AB=AC,求证:BE=CF;(3)若AB<AC,求证:BE<CF.26.如图,直线y=﹣x+3和x轴、y轴的交点分别为B,C,点A的坐标是(﹣,0),∠ABC=30°,若动点M从B点出发沿BC运动,运动的速度为每秒1个单位长度,当点M运动到C点时停止运动,设点M运动t秒时,△ABM的面积为S.(1)求S与t的函数关系式;(2)若△ABC的面积表示为S△ABC,当t为何值时,S=?(3)当t=4时,在坐标轴上是否存在点P,使得△BMP是以BM为直角边的直角三角形?若存在,请直接写出P点坐标;若不存在,请说明理由.浙江省宁波市南三县2019-2019学年八年级上学期期末数学试卷一、选择题(每小题3分,共36分)1.在平面直角坐标系中,点M(﹣2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.专题:计算题.分析:横坐标小于0,纵坐标大于0,则这点在第二象限.解答:解:∵﹣2<0,3>0,∴(﹣2,3)在第二象限,故选B.点评:本题考查了点的坐标,个象限内坐标的符号:第一象限:+,+;第二象限:﹣,+;第三象限:﹣,﹣;第四象限:+,﹣;是基础知识要熟练掌握.2.下列长度的三条线段能组成三角形的是()A.1,2,4B.4,5,9C.4,6,8D.5,5,11考点:三角形三边关系.分析:根据三角形的三边关系对各选项进行逐一分析即可.解答:解:A、∵1+2=3<4,∴不能构成三角形,故本选项错误;B、∵4+5=9,∴不能构成三角形,故本选项错误;C、∵6﹣4<8<6+4,∴能构成三角形,故本选项正确;D、∵5+5=10<11,∴不能构成三角形,故本选项错误.故选C.点评:本题考查的是三角形三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.3.若x>y,则下列式子错误的是()A.x﹣1>y﹣1B.﹣3x>﹣3yC.x+1>y+1D.>考点:不等式的性质.分析:根据不等式的基本性质进行判断.解答:解:A、在不等式x>y的两边同时减去1,不等式仍成立,即x﹣1>y﹣1,故本选项不符合题意;B、在不等式x>y的两边同时乘以﹣3,不等号方向发生改变,即﹣3x<﹣3y,故本选项符合题意;C、在不等式x>y的两边同时加上1,不等式仍成立,即x+1>y+1,故本选项不符合题意;D、在不等式x>y的两边同时除以3,不等式仍成立,即>,故本选项不符合题意;故选:B.点评:主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.4.不等式17﹣3x>2的正整数解的数量是()A.2个B.3个C.4个D.5个考点:一元一次不等式的整数解.专题:计算题.分析:先求出不等式的解集,在取值范围内可以找到正整数解.解答:解:不等式17﹣3x>2的解集为x<5,则正整数解为1,2,3,4,共4个.故选C.点评:熟练掌握不等式的基本性质,是解此题的关键.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.5.已知:如图,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A.∠A与∠D互为余角B.∠A=∠2C.△ABC≌△CEDD.∠1=∠2考点:全等三角形的判定与性质.分析:先根据角角边证明△ABC与△CED全等,再根据全等三角形对应边相等,全等三角形的对应角相等的性质对各选项判断后,利用排除法求解.解答:解:∵AC⊥CD,∴∠1+∠2=90°,∵∠B=90°,∴∠1+∠A=90°,∴∠A=∠2,在△ABC和△CED中,,∴△ABC≌△CED(AAS),故B、C选项正确;∵∠2+∠D=90°,∴∠A+∠D=90°,故A选项正确;∵AC⊥CD,∴∠ACD=90°,∠1+∠2=90°,故D选项错误.故选D.点评:本题主要考查全等三角形的性质,先证明三角形全等是解决本题的突破口,也是难点所在.做题时,要结合已知条件与全等的判定方法对选项逐一验证.6.已知正比例函数y=kx(k≠0)的图象经过点(1,﹣2),则这个正比例函数的解析式为()A.y=2xB.y=﹣2xC.D.考点:待定系数法求正比例函数解析式.分析:利用待定系数法把(1,﹣2)代入正比例函数y=kx中计算出k即可得到解析式.解答:解:∵正比例函数y=kx经过点(1,﹣2),∴﹣2=1•k,解得:k=﹣2,∴这个正比例函数的解析式为:y=﹣2x.故选B.点评:此题主要考查了待定系数法求正比例函数解析式,题目比较简单,关键是能正确代入即可.7.已知△ABC中,∠A=∠B=∠C,则它的三条边之比为()A.1:1:B.1::2C.1::D.1:4:1考点:勾股定理.专题:计算题.分析:根据给出的条件和三角形的内角和定理计算出三角形的角,再计算出它们的边的比.解答:解:∵∠A=∠B=∠C,∠A+∠B+∠C=180°,∴∠A=30°,∠B=60°,∠C=90°,∴c=2a,b=a,∴三条边的比是1::2.故选:B.点评:本题考查了三角形的内角和定理和勾股定理,通过知道角的度数计算特殊三角形边的比.8.一副三角板如图叠放在一起,则图中∠α的度数为()A.75°B.60°C.65°D.55°考点:三角形的外角性质;三角形内角和定理.分析:因为三角板的度数为45°,60°,所以根据三角形内角和定理即可求解.解答:解:如图,∵∠1=60°,∠2=45°,∴∠α=180°﹣45°﹣60°=75°,故选A.点评:本题利用三角板度数的常识和三角形内角和定理,熟练掌握定理是解题的关键.9.已知点(﹣4,y1),(2,y2)在直线y=﹣+b上,则y1与y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较考点:一次函数图象上点的坐标特征.分析:根据一次函数图象的增减性进行填空.解答:解:∵直线y=﹣+b中的﹣<0,∴该直线是y随x的增大而减小,∵点A(﹣4,y1)和点B(2,y2)都在直线y=﹣+b上,∴2>﹣4,∴y2<y1.故选A.点评:本题考查了一次函数图象上点的坐标特征.解答该题时,也可以把点A、B的坐标分别代入直线方程,分别求得y1,y2的值,然后再来比较它们的大小.10.如图,一次函数y1=﹣x+7与正比例函数y2=x的图象交于点A,若y1>y2,则自变量x的取值范围是()A.x>3B.x<3C.x>4D.x<4考点:一次函数与一元一次不等式.分析:观察函数图象得到当x<3时,直线y1都在直线y2的上方,即y1>y2.解答:解:当x<3时,直线y1=﹣x+7的图象都在直线y2=x的上方,即y1>y2.故选B.点评:本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.也考查了观察函数图象的能力.11.如图,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是边AC上一点,若AE=2,则EM+CM的最小值为()A
本文标题:【解析版】宁波市南三县2018-2019学年八年级上期末数学试卷
链接地址:https://www.777doc.com/doc-2203261 .html