您好,欢迎访问三七文档
1、正整数按下图的规律排列.请写出第20行,第21列的数字.2、下图是用火柴棍摆成的边长分别是1,2,3根火柴棍时的正方形.当边长为n根火柴棍时,设摆出的正方形所用的火柴棍的根数为s,则s=.(用n的代数式表示s)3、某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验;第1组取3粒,第2组取5粒,第3组取7粒……即每组所取种子数目比该组前一组增加2粒,按此规律,那么请你推测第n组应该有种子数()粒。学A、12nB、12nC、n2D、2n学科4、将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,……,依次规律,第6个图形有个小圆.5、下图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n(n是正整数)个图案中由个基础图形组成.6、将图①中的正方形剪开得到图②,图②中共有4个正方形;将图②中一个正方形剪开得到图③,图③中共有7个正方形;将图③中一个正方形剪开得到图④,图④中共有10个正方形;…;如此下去.则图⑨中共有个正方形.第一行第二行第三行第四行第五行第一列第二列第三列第四列第五列1251017…4361118…9871219…1615141320…2524232221……………n=1n=2n=3第1个图形第2个图形第3个图形第4个图形…(1)(2)(3)……7、观察图中每一个大三角形中白色三角形的排列规律,则第5个大三角形中白色三角形有个.8、察下表,回答问题:第个图形中“△”的个数是“○”的个数的5倍.9.用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地板,则第(3)个图形中有黑色瓷砖-__________块,第n个图形中需要黑色瓷砖__________块(用含n的代数式表示).10.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是.11.如图,由等圆组成的一组图中,第1个图由1个圆组成,第2个图由7个圆组成,第3个图由19个圆组成,,按照这样的规律排列下去,则第9个图形由_______个圆组成.12.观察下列一组数:21,43,65,87,……,它们是按一定规律排列的.那么这一组数的第k个数是.序号123…图形…(1)(2)(3)第一个第二个…第三个……13.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:第(4)个图案中有黑色地砖4块;那么第(n)个图案中有白色..地砖块。14.将一张长方形的纸对折,如图所示可得到一条折痕(图中虚线).继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,那么对折四次可以得到条折痕.如果对折n次,可以得到条折痕.15.观察下面一列有规律的数,486,355,244,153,82,31,根据这个规律可知第n个数是16.古希腊数学家把数1,3,6,10,15,21,……,叫做三角形数,它有一定的规律性,则第24个三角形数与第22个三角形数的差为。17.如下图,从A地到C地,可供选择的方案是走水路、走陆路、走空中.从A地到B地有2条水路、2条陆路,从B地到C地有3条陆路可供选择,走空中从A地不经B地直接到C地.则从A地到C地可供选择的方案有()A.20种B.8种C.5种D.13种18.先观察321211=)3121()2111(=1-31=32431321211=)4131()3121()2111(=1-41=43再计算)1(1431321211nn的值.19.找规律填数:(1)4、7、10、13、()(2)6、12、24、48、()(3)5、11、19、29、()(4)2、5、9、14、()(5))(),(,43,32,21(6)1、1、2、3、5、8、()20.观察下列顺序排列的等式:9×0+1=19×1+2=119×2+3=219×4+5=41…,猜想:第20个等式应为:21.我们把分子为1的分数叫做单位分数.如21,31,41…,任何一个单位分数都可以拆分成两个不同的单位分数的和,如21=6131,31=12141,41=20151,…根据对上述式子的观察,你会发现51=11.请写出□,○所表示的数;第17题○□(3)(2)(1)第11题图n=1n=2n=3……第3个第2个第1个22.下图是某同学在沙滩上用石于摆成的小房子.观察图形的变化规律,写出第n个小房子用了块石子.23.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:按照上面的规律,摆n个“金鱼”需用火柴棒的根数______________24.柜台上放着一堆罐头,它们摆放的形状见右图:第一层有23听罐头,第二层有34听罐头,第三层有45听罐头,……根据这堆罐头排列的规律,第n(n为正整数)层有听罐头(用含n的式子表示).25.按如下规律摆放三角形:则第(4)堆三角形的个数为_____________;第(n)堆三角形的个数为________________.26.用同样大小的正方形按下列规律摆放,将重叠部分涂上颜色,下面的图案中,第n个图案中正方形的个数是。27.用黑白两种颜色的正方形纸片,按黑色纸片数逐渐加1的规律拼成一列图案:(1)第4个图案中有白色纸片张;(2)第n个图案中有白色纸片张.28.观察下列等式:918;12416;16925;……………这些等式反映出自然数间的某种规律,设n表示自然数,用关于n的等式表示出来:__________29、现有黑色三角形“▲”和“△”共200个,按照一定规律排列如下:▲▲△△▲△▲▲△△▲△▲▲……则黑色三角形有个,白色三角形有个。30、观察下面的一列数:21,-61,121,-201……请你找出其中排列的规律,并按此规律填空.第9个数是_______。……①②③第8题图31.观察下列等式,然后填空。134135913571613579251357911(1)第5个式子等号右边应填的数是(2)根据规律填空135791997199932、在广场上摆放了一些长桌子用于签名,每张长桌单独摆放时,可容纳6人同时签名(如图1,每个小半圆代表1个签名位置),并排摆放两张长桌时可容纳10人时签名(如图2)若按这种方式摆放10张长桌(如图3),可同时容纳的签名人数是。33、观察下列等式:121=112,12321=1112,1234321=11112,…,那么:12345678987654321=。34.在如图所示的2003年1月份的日历中,用一个方框圈出任意3×3个数星期日星期一星期二星期三星期四星期五星期六12345678910111213141516171819202122232425262728293031(1)从左下角到右上角的三个数字之和为45,那么这9个数的和是多少?这9个日期中最后一天是1月几日?(2)用这样的方框能否圈出总和为162的9个数?35.观察图1-27中有几个三角形?由此你发现三角形的个数有什么规律呢?一个三角形3个三角形______个三角形______个三角形_________个三角形(n个点)
本文标题:七年级找规律试题
链接地址:https://www.777doc.com/doc-2208067 .html