您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 管理学资料 > 炼铁技术研究知识汇总二
炼铁技术研究知识汇总二16、炉渣的主要成分是什么?答:炉渣成分来自以下几个方面:(1)矿石中的脉石;(2)焦炭灰分;(3)熔剂氧化物;(4)被浸的炉衬;(5)初渣中含有大量矿石中的氧化物。对炉渣性质起决定性作用的是前三项。脉石和灰分的主要成分是SiO2和Al2O3称酸性氧化物;熔剂氧化物主要是CaO和MgO称碱性氧化物。当这些氧化物单独存在时,其熔点都很高,高炉条件下不能熔化。只有它们之间相互作用形成低熔点化合物,才能熔化成具有良好流动性的熔渣。原料中加入熔剂的目的就是为了中和脉石和灰分中的酸性氧化物,形成高条件下能熔化并自由流动的低熔点化合物。炉渣的主要成分就是上述4种氧化物。用特殊矿石冶炼时,根据不同的矿石种类,炉渣中还会CaF2、TiO2、BaO、MnO等氧化物。另外,高炉渣中总是含有少量的FeO和硫化物。17、炉渣在高炉冶炼过程中起什么作用?答:由于炉渣具有熔点低、密度小和不溶于生铁的特点,所以高炉冶炼过程中渣、铁才能得以分离,获得纯净的生铁,这是高炉造渣过程的基本作用。另外,炉渣对高炉冶炼还有以下几方面的作用:(1)渣铁之间进行合金元素的还原及脱硫反应,起着控制生铁成分的作用。比如,高碱度渣能促进脱硫反应,有利于锰的还原,从而提高生铁质量。(2)炉渣的形成造成了高炉内的软熔带及滴落带,对炉内煤气流分布及炉料的下降都有很大的影响,因此,炉渣的性质和数量对高炉操作直接产生作用。(3)炉渣附着在炉墙上形成渣皮,起保护炉衬的作用。但是另一种情况下又可能侵蚀炉衬,起破坏性作用。因此,炉渣成分和性质直接影响高炉寿命。在控制和调整炉渣成分和性质时,必须兼顾上述几方面的作用。18、什么叫炉渣碱度?答:炉渣碱度就是用来表示炉渣酸碱性的指数。尽管组成炉渣的氧化物种类很多,但对炉渣性能影响较大和炉渣中含量最多的是CaO、MgO和SiO2、Al2O3这四种氧化物,因此通常用其中的碱性氧化物CaO、MgO和酸性氧化物SiO2、Al2O3的质量分数之比来表示炉渣碱度,常用的有以下几种:(1)四元碱度;(2)三元碱度;(3)二元碱度高炉生产中可根据各自炉渣成分的特点选择一种最简单又具有代表性的表示方法。渣的碱度在一定程度上决定了其熔化温度、熔化性温度、黏度及黏度随温度变化的特征,以及其脱硫和排碱能力等。因此碱度是非常重要的代表炉渣成分的实用性很强的参数。19、什么叫碱性炉渣和酸性炉渣?答:炉渣成分可分为碱性氧化物和酸性氧化物两大类。现代炉渣结构理论认为熔融炉渣是由离子组成的。熔融炉渣中能提供氧离子&-0的氧化物称为碱性氧化物,反之,能吸收氧离子的氧化物称为酸性氧化物,有些既能提供又能吸收氧离子的氧化物则称为中性氧化物或两性氧化物。组成炉渣的各种氧化物按其碱性的强弱排列,其中CaF2以前可视为碱性氧化物,Fe2O3和Al2O3为中性氧化物,而TiO2、、SiO2为酸性氧化物。碱性氧化物可与酸性氧化物结合形成盐类,并且酸碱性相距越大,结合力就越强。以碱性氧化物为主的炉渣称为碱性炉渣,以酸性氧化物为主的炉渣称为酸性炉渣。生产中常把二元碱度大于1.0的叫碱性渣,把二元碱度小于1.0的叫酸性渣。20、炉渣的软熔特性对高炉冶炼有什么影响?答:炉渣的软熔特性与矿石的软化特性有关,其对高炉冶炼的影响是,矿石软化温度愈低,初渣出现得愈早,软熔带位置越高,初渣温度低,进入炉缸后吸收炉缸热量,增加高炉热消耗;软化区间愈大,软熔带融着层愈宽,对煤气流的阻力愈大,对高炉顺行不利。所以,一般希望矿石软化温度要高些,软化区间要窄些。这样软熔带位置较低,初渣温度较高,软熔带融着层较窄,对煤气阻力较小。一般矿石软化温度波动在900-1200℃之间。21、什么叫炉渣的熔化温度?它对高炉冶炼有什么影响?答:炉渣的熔化温度指炉渣完全熔化为液相的温度,或液态炉渣冷却时开始析出固相的温度,即相图中的液相线温度。单一晶体具有确定的熔点,而炉渣没有确定的熔点,炉渣从开始熔化到完全熔化是在一定的温度范围内完成的。熔化温度是炉渣熔化性的标志之一,熔化温度高,表明它难熔,熔化温度低,表明它易熔。难熔炉渣在炉内温度不足的情况下,可能黏度升高,影响成渣带以下的透气性,不利于高炉顺行;但难熔炉渣成渣带低,进入炉缸时温度高,增加炉缸热量,对高炉冶炼有利。易熔炉渣流动性好,有利于高炉顺行,但降低炉缸热量,增加炉缸热消耗。因此,选择炉渣熔化温度时,必须兼顾流动性和热量两方面的因素。各种不同成分炉渣的熔化温度可以从四元系熔化温度图中查得。22、什么叫炉渣熔化性温度?它对高炉冶炼有什么影响?答:炉渣熔化之后能自由流动的温度叫做熔化性温度。有的炉渣虽然熔化温度不高,但熔化之后却不能自由流动,仍然十分黏稠,只有把温度进一步提高到一定程度之后才能达到自由流动的状态,因此,为了保证高炉的正常生产,只了解炉渣的熔化温度还不够,还必须了解炉渣自由流动的温度,即熔化性温度。炉渣的熔化性温度是通过绘制炉渣黏度——温度曲线的方法来确定的。熔化性温度说明该温度下炉渣能否自由流动,因此,炉渣熔化性温度的高低影响高炉顺行和炉渣能否顺利排出。只有熔化性温度低于高炉正常生产所能达到的炉缸温度,才能保证高炉顺行和炉渣的正常排放。23、什么叫炉渣黏度?它对高炉冶炼有什么影响?答:炉渣黏度直接关系到炉渣流动性的好坏,而炉渣流动性又直接影响高炉顺行和生铁质量,因此它是高炉工作者最关心的一个炉渣性质指标。炉渣黏度是流动性的倒数。黏度是指速度不同的两层液体之间的内摩擦系数。试验结果表明,流速不同的两层液体之间的内摩擦力与接触面积的大小和速度差的大小成正比,与两液层之间的距离成反比。炉渣黏度对高炉冶炼的影响,首先是黏度大小影响成渣带以下料柱的透气性。炉渣黏度过高,则在滴落带不能顺利流动,降低焦炭骨架的空隙度,增加煤气阻力,影响高炉顺行。其次,黏度影响炉渣的脱硫能力。黏度低流动性好的炉渣有利于脱硫,黏度大流动性差的炉渣不利于脱硫。这是因为黏度低的炉渣有利于硫离子的扩散,促进脱硫反应。第三,炉渣黏度影响放渣操作。黏度过高的炉渣发生黏沟、渣口凝渣等现象,造成放渣困难。最后,炉渣黏度影响高炉寿命。黏度高的炉渣在炉内容易形成渣皮,起保护炉衬的作用,而黏度过低,流动性过好的炉渣冲刷炉衬,缩短高炉寿命。24、什么叫长渣?什么叫短渣?答:长渣是炉渣黏度随温度降低而逐渐升高,在黏度——温度曲线上无明显转折点的炉渣,一般酸性渣具有长渣特性,在生产中取渣样时,渣液能拉成长丝,冷却后渣样断面呈玻璃状。短渣与长渣相反,在黏度——温度曲线上有明显的转折点,一般碱性渣为短渣,取样时渣液不能拉成长丝,冷却后渣样断面呈石头状。25、哪些因素影响炉渣黏度?答:影响炉渣黏度的因素为:(1)温度是影响炉渣黏度的主要因素,一般规律是黏度随温度升高而降低。碱性渣(短渣)在温度超过熔化性温度的拐点以后,黏度低但随温度的变化不大,而酸性渣(长渣)的黏度始终是随温度升高而缓慢降低,且在相同温度下其黏度高于碱性渣。(2)碱度。在不同碱度时炉渣黏度与温度的关系图中,当碱度小于1.2时,炉渣的熔化性温度较低,相应其黏度也较低;随着碱度的提高,熔化性温度上升,黏度也升高。造成这种现象的原因是随着碱性氧化物数量的增加,熔点升高,使一定温度下渣的过热度减小而使黏度增高,另外过多的碱性氧化物以质点悬浮在炉渣中使黏度增高。在生产中如遇这些情况,加入少量CaF2可明显降低炉渣黏度,例如包头含氟矿冶炼时就是这样。(3)MgO含量对黏度有相当大的影响,尤其在酸性渣中更为明显。在含量不超过20%,含量的增加使黏度下降,但在三元碱度不变,用MgO代替CaO时,这种作用就不明显。但MgO含量在8-12%时有利于改善炉渣的稳定性和难熔性。(4)Al2O3对黏度的影响是:当Al2O3含量不大时它可使碱性渣的黏度降低,但是高于一定数值后,对于不同碱度的炉渣,黏度开始增加,目前为提高入炉品位,使用高品位的东半球富矿,其Al2O3含量偏高,造成炉渣中的Al2O3含量达到15%,有的甚至达到16%以上,这时炉渣黏度上升。为此应适当提高炉渣的碱度,例如宝钢的二元碱度值在1.22—1.24,三元碱度值在1.45—1.50;或适当提高渣中MgO含量,例如武钢炉渣中MgO的含量在11—11.5%。(5)FeO能显著降低炉渣黏度。一般终渣含FeO很少,约0.5%,影响不大。但初渣中它的含量却很大,最多可达35%,平均在2--14%之间波动。含FeO(0--30%)的炉渣,其熔化温度不高于1150℃,因此,FeO能大大降低炉渣熔化温度和黏度,起着稀释炉渣的作用,对冶炼有一定好处。但过多的FeO会造成初渣和中间渣的不稳定性,FeO因为在下降过程中不断被还原,使初渣和中间渣的熔化温度和黏度发生很大变化,引起炉况不顺。(6)MnO对炉渣黏度的影响和FeO相似。不过,目前我国炼钢生铁不要求含Mn,因此,高炉渣中MnO含量很少,影响不大。(7)CaF2能显著降低炉渣的熔化性温度和黏度。含氟炉渣的熔化性温度低,流动性好,炉渣碱度很高的情况下(1.5—3.0),仍能保持良好的流动性,因此,高炉生产中常用萤石作洗炉剂。(8)TiO2对炉渣黏度的影响:碱度为0.8—1.4和TiO2含量为10--20%的范围内,钛渣的熔化性温度在1300--1400℃之间。碱度相同时,随着TiO2含量的增加熔化性温度升高,黏度降低。从TiO2对炉渣的熔化性温度和黏度的影响来看,钛渣对高炉生产不会有多大影响。但实际上钒钛铁矿的冶炼由于炉渣过于黏稠而感到困难。这主要是由钛渣性质的不稳定造成的。高炉还原气氛中,一部分TiO2很容易还原成低价氧化物(Ti2O3、TiO)和金属钛,生成的金属钛一部分进入生铁,还有一部分与炉内的C、N2作用生成熔点很高的TiC和TiN,呈固体颗粒掺入渣中,渣中钛的低价氧化物和碳氮化合物使炉渣黏稠起来,以致影响正常的出渣出铁。因此,冶炼钒钛铁矿时必须防止TiO2的还原。目前采取的办法是炉缸渣层中喷射空气或矿粉,造成氧化气氛,以防止或减少TiO2的还原。26、关于炉渣结构有哪两种理论?答:关于炉渣结构的两种理论是:(1)炉渣分子结构理论。这种理论是根据固体炉渣的相分析和化学分析提出来的,它认为液态炉渣和固态炉渣一样是由各种矿物分子构成的,其理论要点是:1)熔融炉渣是由各种自由氧化物分子和由这些氧化物所形成的复杂化合物分子所组成。2)酸性氧化物和碱性氧化物相互作用形成复杂化合物,且处于化学动平衡状态,温度越高,复杂化合物的离解程度越高,熔渣中的自由氧化物浓度增加,温度降低,自由氧化物浓度降低。3)只有熔渣中的自由氧化物才能参加反应。4)熔渣是理想溶液,可以用理想溶液的各种定律来进行定量计算。这种理论由于无法解释后来发现的炉渣的电化学特性和炉渣黏度随碱度发生巨大变化等现象而逐渐被淘汰。不过,在判断反应进行的条件、难易、方向及进行热力学计算等方面,至今仍然沿用。(2)炉渣离子结构理论。炉渣的离子结构理论是根据对固体炉渣的X射线结构分析和对熔融炉渣的电化学试验结果提出来的。对碱性和中性固体炉渣的X射线分析表明,它们都是由正负离子相互配位所构成的空间点阵结构。对熔渣进行电化学试验的结果表明,熔体能导电,有确定的电导值,与典型的离子化合物的电导值差不多,且随着温度的升高而导电性增强。这正是离子导电的特性。熔渣可以电解,在阴极上析出金属。以上这些现象用熔渣的分子结构理论是无法解释的,于是提出了熔渣的离子结构理论。离子结构理论认为,液态炉渣是属于由各种不同的正负离子所组成的离子溶液。硅氧复合负离子按其结构特点又称硅氧复合四面体。四面体的四个顶点是氧离子,四面体中心位置上是硅离子,硅的四个正化合价与四个氧离子的四个负化合价结合,而四个氧离子的其余四个负化合价,或与周围其他正离子结合,或与其他硅氧四面体的硅结合,形成共用顶点。构成熔渣的离子中,硅氧复合负离子体积最大。同时,复合负离子的结构最复杂,其周围结合的金属离子最多,因此,它是构成炉渣的基本单元,炉渣的许多性质决定于复合离子的形态。具有群体负离子的熔渣,其物理性质与四面体单独存在的熔渣完全不相同,即熔渣的物理性质取决于复
本文标题:炼铁技术研究知识汇总二
链接地址:https://www.777doc.com/doc-2216447 .html