您好,欢迎访问三七文档
静电场一、电场强度1、实验定律a、库仑定律:[内容]条件:⑴点电荷,⑵真空,⑶点电荷静止或相对静止。事实上,条件⑴和⑵均不能视为对库仑定律的限制,因为叠加原理可以将点电荷之间的静电力应用到一般带电体,非真空介质可以通过介电常数将k进行修正(如果介质分布是均匀和“充分宽广”的,一般认为k′=k/εr)。只有条件⑶,它才是静电学的基本前提和出发点(但这一点又是常常被忽视和被不恰当地“综合应用”的)。b、电荷守恒定律c、叠加原理2、电场强度a、电场强度的定义(使用高斯定理)电场的概念;试探电荷(检验电荷);定义意味着一种适用于任何电场的对电场的检测手段;电场线是抽象而直观地描述电场有效工具(电场线的基本属性)。b、不同电场中场强的计算:决定电场强弱的因素有两个,场源(带电量和带电体的形状)和空间位置。这可以从不同电场的场强决定式看出——⑴点电荷:E=k2rQ结合点电荷的场强和叠加原理,我们可以求出任何电场的场强⑵均匀带电环,垂直环面轴线上的某点P:E=2322)Rr(kQr,其中r和R的意义见图。⑶均匀带电球壳内部:E内=0外部:E外=k2rQ,其中r指考察点到球心的距离如果球壳是有厚度的的(内径R1、外径R2),在壳体中(R1<r<R2):E=2313rRrk34,其中ρ为电荷体密度。这个式子的物理意义可以参照万有引力定律当中(条件部分)的“剥皮法则”理解〔)Rr(3433即为图中虚线以内部分的总电量〕。⑷无限长均匀带电直线(电荷线密度为λ):E=rk2⑸无限大均匀带电平面(电荷面密度为σ):E=2πkσ二、电势1、电势:把一电荷从P点移到参考点P0时电场力所做的功W与该电荷电量q的比值,即U=qW参考点即电势为零的点,通常取无穷远或大地为参考点。和场强一样,电势是属于场本身的物理量。W则为电荷的电势能。2、典型电场的电势a、点电荷以无穷远为参考点,U=krQb、均匀带电球壳以无穷远为参考点,U外=krQ,U内=kRQ3、电势的叠加:由于电势的是标量,所以电势的叠加服从代数加法。很显然,有了点电荷电势的表达式和叠加原理,我们可以求出任何电场的电势分布。4、电场力对电荷做功WAB=q(UA-UB)=qUAB三、静电场中的导体静电感应→静电平衡(狭义和广义)→静电屏蔽1、静电平衡的特征可以总结为以下三层含义a、导体内部的合场强...为零;表面的合场强...不为零且一般各处不等,表面的合场强...方向总是垂直导体表面。b、导体是等势体,表面是等势面。c、导体内部没有净电荷;孤立导体的净电荷在表面的分布情况取决于导体表面的曲率。2、静电屏蔽导体壳(网罩)不接地时,可以实现外部对内部的屏蔽,但不能实现内部对外部的屏蔽;导体壳(网罩)接地后,既可实现外部对内部的屏蔽,也可实现内部对外部的屏蔽。四、电容1、电容器:孤立导体电容器→一般电容器2、电容a、定义式C=UQb、决定式。决定电容器电容的因素是:导体的形状和位置关系、绝缘介质的种类,所以不同电容器有不同的电容——(1)平行板电容器C=kd4Sr=dS,其中ε为绝对介电常数(真空中ε0=k41,其它介质中ε=k41),εr则为相对介电常数,εr=0(2)球形电容器:C=)RR(kRR1221r3、电容器的连接a、串联C1=1C1+2C1+3C1+…+nC1b、并联C=C1+C2+C3+…+Cn4、电容器的能量用图表征电容器的充电过程,“搬运”电荷做功W就是图中阴影的面积,这也就是电容器的储能E=21q0U0=21C20U=21Cq20电场的能量:电容器储存的能量究竟是属于电荷还是属于电场?正确答案是后者,因此,我们可以将电容器的能量用场强E表示。对平行板电容器E总=k8SdE2认为电场能均匀分布在电场中,则单位体积的电场储能w=k81E2。而且,这以结论适用于非匀强电场。五、电介质的极化重要模型与专题一、场强和电场力【物理情形1】试证明:均匀带电球壳内部任意一点的场强均为零。【模型变换】半径为R的均匀带电球面,电荷的面密度为σ,试求球心处的电场强度。〖思考〗如果这个半球面在yoz平面的两边均匀带有异种电荷,面密度仍为σ,那么,球心处的场强又是多少?【物理情形2】有一个均匀的带电球体,球心在O点,半径为R,电荷体密度为ρ,球体内有一个球形空腔,空腔球心在O′点,半径为R′,OO=a,试求空腔中各点的场强。二、电势、电量与电场力的功【物理情形1】如图所示,半径为R的圆环均匀带电,电荷线密度为λ,圆心在O点,过圆心跟环面垂直的轴线上有P点,PO=r,以无穷远为参考点,试求P点的电势UP。〖思考〗将环换成半径为R的薄球壳,总电量仍为Q,试问:(1)当电量均匀分布时,球心电势为多少?球内(包括表面)各点电势为多少?(2)当电量不均匀分布时,球心电势为多少?球内(包括表面)各点电势为多少?【相关应用】如图所示,球形导体空腔内、外壁的半径分别为R1和R2,带有净电量+q,现在其内部距球心为r的地方放一个电量为+Q的点电荷,试求球心处的电势。〖练习〗如图所示,两个极薄的同心导体球壳A和B,半径分别为RA和RB,现让A壳接地,而在B壳的外部距球心d的地方放一个电量为+q的点电荷。试求:(1)A球壳的感应电荷量;(2)外球壳的电势。【物理情形2】图中,三根实线表示三根首尾相连的等长绝缘细棒,每根棒上的电荷分布情况与绝缘棒都换成导体棒时完全相同。点A是Δabc的中心,点B则与A相对bc棒对称,且已测得它们的电势分别为UA和UB。试问:若将ab棒取走,A、B两点的电势将变为多少?〖练习〗电荷q均匀分布在半球面ACB上,球面半径为R,CD为通过半球顶点C和球心O的轴线,如图所示。P、Q为CD轴线上相对O点对称的两点,已知P点的电势为UP,试求Q点的电势UQ。【物理情形3】如图所示,A、B两点相距2L,圆弧DCO是以B为圆心、L为半径的半圆。A处放有电量为q的电荷,B处放有电量为-q的点电荷。试问:(1)将单位正电荷从O点沿DCO移到D点,电场力对它做了多少功?(2)将单位负电荷从D点沿AB的延长线移到无穷远处去,电场力对它做多少功?【相关应用】在不计重力空间,有A、B两个带电小球,电量分别为q1和q2,质量分别为m1和m2,被固定在相距L的两点。试问:(1)若解除A球的固定,它能获得的最大动能是多少?(2)若同时解除两球的固定,它们各自的获得的最大动能是多少?(3)未解除固定时,这个系统的静电势能是多少?〖思考〗设三个点电荷的电量分别为q1、q2和q3,两两相距为r12、r23和r31,则这个点电荷系统的静电势能是多少?〖反馈应用〗如图所示,三个带同种电荷的相同金属小球,每个球的质量均为m、电量均为q,用长度为L的三根绝缘轻绳连接着,系统放在光滑、绝缘的水平面上。现将其中的一根绳子剪断,三个球将开始运动起来,试求中间这个小球的最大速度。三、电场中的导体和电介质【物理情形】两块平行放置的很大的金属薄板A和B,面积都是S,间距为d(d远小于金属板的线度),已知A板带净电量+Q1,B板带尽电量+Q2,且Q2<Q1,试求:(1)两板内外表面的电量分别是多少;(2)空间各处的场强;(3)两板间的电势差。【模型变换】如图所示,一平行板电容器,极板面积为S,其上半部为真空,而下半部充满相对介电常数为εr的均匀电介质,当两极板分别带上+Q和−Q的电量后,试求:(1)板上自由电荷的分布;(2)两板之间的场强;(3)介质表面的极化电荷。〖思考应用〗一个带电量为Q的金属小球,周围充满相对介电常数为εr的均匀电介质,试求与与导体表面接触的介质表面的极化电荷量。四、电容器的相关计算【物理情形1】由许多个电容为C的电容器组成一个如图所示的多级网络,试问:(1)在最后一级的右边并联一个多大电容C′,可使整个网络的A、B两端电容也为C′?(2)不接C′,但无限地增加网络的级数,整个网络A、B两端的总电容是多少?【物理情形2】如图所示的电路中,三个电容器完全相同,电源电动势ε1=3.0V,ε2=4.5V,开关K1和K2接通前电容器均未带电,试求K1和K2接通后三个电容器的电压Uao、Ubo和Uco各为多少。【练习】1.把两个相同的电量为q的点电荷固定在相距l的地方,在二者中间放上第三个质量为m的电量亦为q的点电荷,现沿电荷连线方向给第三个点电荷一小扰动,证明随之发生的小幅振动为简谐运动并求其周期T.2.均匀带电球壳半径为R,带正电,电量为Q,若在球面上划出很小一块,它所带电量为q.试求球壳的其余部分对它的作用力.3.一个半径为a的孤立的带电金属丝环,其中心电势为U0.将此环靠近半径为b的接地的球,只有环中心O位于球面上,如图.试求球上感应电荷的电量.4.半径分别为R1和R2的两个同心半球相对放置,如图所示,两个半球面均匀带电,电荷密度分别为σ1和σ2,试求大的半球面所对应底面圆直径AOB上电势的分布5.如图,电场线从正电荷+q1出发,与正点电荷及负点电荷的连线成α角,则该电场线进入负点电荷-q2的角度β是多大?6.如图,两个以O为球心的同心金属球壳都接地,半径分别是r、R.现在离O为l(r<l<R)的地方放一个点电荷q.问两个球壳上的感应电荷的电量各是多少?7.半径为R2的导电球壳包围半径为R的金属球,金属球原来具有电势为U,如果让球壳接地,则金属球的电势变为多少?8.两个电量q相等的正点电荷位于一无穷大导体平板的同一侧,且与板的距离均为d,两点电荷之间的距离为2d.求在两点电荷联线的中点处电场强度的大小与方向.9.在极板面积为S,相距为d的平行板电容器内充满三种不同的介质,如图所示.⑴如果改用同一种介质充满板间而电容与之前相同,这种介质的介电常数应是多少?⑵如果在ε3和ε1、ε2之间插有极薄的导体薄片,⑴问的结果应是多少?10.球形电容器由半径为r的导体球和与它同心的球壳构成,球壳内半径为R,其间一半充满介电常数为ε的均匀介质,如图所示,求电容.11.如图所示的两块无限大金属平板A、B均接地,现在两板之间放入点电荷q,使它距A板r,距B板R.求A、B两板上的感应电荷电量各如何?12.如图所示的电路中,C1=4C0,C2=2C0,C3=C0,电池电动势为,不计内阻,C0与为已知量.先在断开S4的条件下,接通S1、S2、S3,令电池给三个电容器充电;然后断开S1、S2、S3,接通S4,使电容器放电,求:放电过程中,电阻R上总共产生的热量及放电过程达到放电总量一半时,R上的电流.13.如图所示,一薄壁导体球壳(以下简称为球壳)的球心在O点.球壳通过一细导线与端电压90VU的电池的正极相连,电池负极接地.在球壳外A点有一电量为911010Cq-的点电荷,B点有一电量为921610Cq-的点电荷。OA之间的距离120cmd,OB之间的距离240cmd.现设想球壳的半径从10cma开始缓慢地增大到50cm,问:在此过程中的不同阶段,大地流向球壳的电量各是多少?己知静电力恒量922910NmCk-.假设点电荷能穿过球壳壁进入导体球壳内而不与导体壁接触。稳恒电流一、欧姆定律1、电阻定律a、电阻定律R=ρSlb、金属的电阻率ρ=ρ0(1+αt)2、欧姆定律a、外电路欧姆定律U=IR,顺着电流方向电势降落b、含源电路欧姆定律在如图所示的含源电路中,从A点到B点,遵照原则:①遇电阻,顺电流方向电势降落(逆电流方向电势升高)②遇电源,正极到负极电势降落,负极到正极电势升高(与电流方向无关),可以得到关系式:UA−IR−ε−Ir=UB这就是含源电路欧姆定律。c、闭合电路欧姆定律在图中,若将A、B两点短接,则电流方向只可能向左,含源电路欧姆定律成为UA+IR−ε+Ir=UB=UA即ε=IR+Ir或I=rR这就是闭合电路欧姆定律。值得注意的的是:①对于复杂电路,“干路电流I”不能做绝对的理解(任何要考察的一条路均可视为干路);②电源的概念也是相对的,它可以是多个电源的串、并联,也可以是电源和电阻组成的系统;③外电阻R可以是多个电阻的串、并联或混联,但不能包含电源。二、复杂电路的计算1、戴
本文标题:物理竞赛电学讲义
链接地址:https://www.777doc.com/doc-2221672 .html