您好,欢迎访问三七文档
《功能材料》课程论文纳米材料及其应用姓名:虎少奇班级:金材132班学号:131402080113材料科学与工程学院河南科技大学纳米材料及其应用摘要:纳米材料由于其独特的效应,使得纳米材料具有不同于常规材料的特殊用途。近年来,随着科学技术尤其是纳米技术的发展,纳米材料已经从高精尖领域逐渐走到百姓的生活之中,它的科学价值及应用价值逐渐被发现和认识,纳米技术的研究得到了更多的关注。逐渐新兴起的的纳米材料进入人们的眼球,就需要我们对纳米材料进行更多的研究与发展,揭秘其中的奥秘之处,就像人们所认知的那样被大家熟知。为此,我们应该付出更多的努力。本文将带大家探索我们不太熟知的纳米材料的奥秘,关键词:纳米材料;效应;纳米技术;纳米结构;应用范围;1.纳米材料纳米级结构材料简称为纳米材料,广义上是三维空间中至少有一维处于纳米尺度范围超精细颗粒材料的总称。根据2011年10月18日欧盟委员会通过的定义,纳米材料是一种由基本颗粒组成的粉状、团块状的天然或人工材料,这一基本颗粒的一个或多个三维尺寸在1纳米至100纳米之间,并且这一基本颗粒的总数量在整个材料的所有颗粒总数中占50%以上。从尺寸大小来说,通常产生物理化学性质显著变化的细小微粒的尺寸在0.1微米以下(注1米=100厘米,1厘米=10000微米,1微米=1000纳米,1纳米=10埃),即100纳米以下。因此,颗粒尺寸在1~100纳米的微粒称为超微粒材料,也是一种纳米材料。纳米颗粒材料又称为超微颗粒材料,由纳米粒子组成。纳米粒子也叫超微颗粒,一般是指尺寸在1~100nm间的粒子,是处在原子簇和宏观物体交界的过渡区域,从通常的关于微观和宏观的观点看,这样的系统既非典型的微观系统亦非典型的宏观系统,是一种典型的介观系统,它具有表面效应、小尺寸效应和宏观量子隧道效应。当人们将宏观物体细分成超微颗粒(纳米级)后,它将显示出许多奇异的特性,即它的光学、热学、电学、磁学、力学以及化学方面的性质和大块固体时相比将会有显著的不同。2.纳米材料的发展史1962年,久保提出超微颗粒的量子限域理论,推动了实验物理学家对纳米微粒的探索。第一个真正认识到纳米粒子的性能并引用纳米概念的是日本科学家。他们在20世纪70年代用蒸发法做了超微粒子,并发现,导电、导热的铜、银导体做成纳米尺度以后,失去原来的性质,表现出既不导电、也不导热。1984年德国的H.Gleiter教授等合成了纳米晶体Pd,Fe等。并且1987年美国阿贡国立实验室Siegel博士制备出纳米TiO2多晶陶瓷,呈现良好的韧性,在100多度高温弯曲仍不裂。这一突破性进展造成第一次世界性纳米热潮,使其成为材料科学的一个分支。这使得纳米材料飞速发展。1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办《Nanotechnology》和《Nanobiology》两种国际性专业期刊也在同年相继问世。标志着纳米科学技术的正式诞生。今天,纳米科技的发展使费曼的预言已逐步成为现实。纳米材料的奇特物性正对人们的生活和社会的发展产生重要的影响。纳米材料的发展分为三个阶段:第一个阶段(在1990年以前)主要是在实验室探索用各种手段制备各种材料的纳米颗粒粉体,合成块体(包括薄膜),研究评估表征的方法,探索纳米材料不同于常规材料的特殊性能。对纳米颗粒和纳米块体材料结构的研究在80年代末期一度形成热潮。研究的对象一般局限在单一材料和单相材料,国际上通常把这类纳米材料称纳米晶或纳米相材料。第二个阶段(1994年以前)是人们关注的热点是如何利用纳米材料已挖掘出来的奇特物理、化学和力学性能,设计纳米复合材料,通常采用纳米微粒与纳米微粒复合,纳米微粒与常规块体复合及发展复合材料的合成及物性的探索一度成为纳米材料研究的主导方向。第三个阶段(1994年以后)主要是纳米组装体系、人工组装合成的纳米结构的材料体系越来越受到人们的关注,正在成为纳米材料研究的新的热点。3.纳米材料的五大效应(1)体积效应当纳米粒子的尺寸与传导电子的德布罗意波相当或更小时,周期性的边界条件将被破坏,磁性、内压、光吸收、热阻、化学活性、催化性及熔点等都较普通粒子发生了很大的变化,这就是纳米粒子的体积效应。(2)表面效应表面效应是指纳米粒子表面原子与总原子数之比随着粒径的变小而急剧增大后所引起的性质上的变化。表9-2给出了纳米粒子尺寸与表面原子数的关系。(3)量子尺寸粒子尺寸下降到一定值时,费米能级接近的电子能级由准连续能级变为分立能级的现象称为量子尺寸效应。例如,导电的金属在超微颗粒时可以变成绝缘体,磁矩的大小和颗粒中电子是奇数还是偶数有关,比热亦会反常变化,光谱线会产生向短波长方向的移动,这就是量子尺寸效应的宏观表现。因此,对超微颗粒在低温条件下必须考虑量子效应,原有宏观规律已不再成立。(4)量子隧道微观粒子具有贯穿势垒的能力称为隧道效应。人们发现一些宏观量,例如微颗粒的磁化强度、量子相干器件的磁通量以及电荷等亦具有隧道效应,它们可以穿越宏观系统的势垒产生变化,故称为宏观的量子隧道效应。用此概念可定性解释超细镍微粒在低温下保持超顺磁性等。(5)介电限域纳米粒子的介电限域效应较少不被注意到。实际样品中,粒子被空气﹑聚合物﹑玻璃和溶剂等介质所包围,而这些介质的折射率通常比无机半导体低。光照射时,由于折射率不同产生了界面,邻近纳米半导体表面的区域﹑纳米半导体表面甚至纳米粒子内部的场强比辐射光的光强增大了。这种局部的场强效应,对半导体纳米粒子的光物理及非线性光学特性有直接的影响。对于无机-有机杂化材料以及用于多相反应体系中光催化材料,介电限域效应对反应过程和动力学有重要影响。4.纳米技术纳米技术的广义范围可包括纳米材料技术及纳米加工技术、纳米测量技术、纳米应用技术等方面。其中纳米材料技术着重于纳米功能性材料的生产(超微粉、镀膜、纳米改性材料等),性能检测技术(化学组成、微结构、表面形态、物、化、电、磁、热及光学等性能)。纳米加工技术包含精密加工技术(能量束加工等)及扫描探针技术。目前,纳米技术主要应用于“袖珍军团“,微型环状激光器,纳米级微电子软件,超微型计算机等方面。5.纳米结构纳米结构是以纳米尺度的物质单元为基础按一定规律构筑或营造的一种新体系。它包括纳米阵列体系、介孔组装体系、薄膜嵌镶体系。对纳米阵列体系的研究集中在由金属纳米微粒或半导体纳米微粒在一个绝缘的衬底上整齐排列所形成的二位体系上。而纳米微粒与介孔固体组装体系由于微粒本身的特性,以及与界面的基体耦合所产生的一些新的效应,也使其成为了研究热点,按照其中支撑体的种类可将它划分为无机介孔复合体和高分子介孔复合体两大类,按支撑体的状态又可将它划分为有序介孔复合体和无序介孔复合体。在薄膜嵌镶体系中,对纳米颗粒膜的主要研究是基于体系的电学特性和磁学特性而展开的。6.纳米材料的制备(1)惰性气体下蒸发凝聚法。通常由具有清洁表面的、粒度为1-100nm的微粒经高压成形而成,纳米陶瓷还需要烧结。国外用上述惰性气体蒸发和真空原位加压方法已研制成功多种纳米固体材料,包括金属和合金,陶瓷、离子晶体、非晶态和半导体等纳米固体材料。我国也成功的利用此方法制成金属、半导体、陶瓷等纳米材料。(2)化学方法:1水热法,包括水热沉淀、合成、分解和结晶法,适宜制备纳米氧化物;2水解法,包括溶胶-凝胶法、溶剂挥发分解法、乳胶法和蒸发分离法等。(3)综合方法。结合物理气相法和化学沉积法所形成的制备方法。其他一般还有球磨粉加工、喷射加工等方法。6.纳米材料的应用范围就目前而言,纳米材料应用主要是天然纳米材料,纳米磁性材料,纳米陶瓷材料,纳米传感器,纳米倾斜功能材料,纳米半导体材料,纳米催化材料,纳米计算机,纳米碳管,医疗应用,家电,环境保护,纺织工业,机械工业等方面。而被我们所了解的纳米材料大概就有纳米磁性材料,纳米陶瓷,纳米半导体材料了。(1)纳米磁性材料在实际中应用的纳米材料大多数都是人工制造的。纳米磁性材料具有十分特别的磁学性质,纳米粒子尺寸小,具有单磁畴结构和矫顽力很高的特性,用它制成的磁记录材料不仅音质、图像和信噪比好,而且记录密度比γ-Fe2O3高几十倍。超顺磁的强磁性纳米颗粒还可制成磁性液体,用于电声器件、阻尼器件、旋转密封及润滑和选矿等领域。(2)纳米陶瓷材料传统的陶瓷材料中晶粒不易滑动,材料质脆,烧结温度高。纳米陶瓷的晶粒尺寸小,晶粒容易在其他晶粒上运动,因此,纳米陶瓷材料具有极高的强度和高韧性以及良好的延展性,这些特性使纳米陶瓷材料可在常温或次高温下进行冷加工。如果在次高温下将纳米陶瓷颗粒加工成形,然后做表面退火处理,就可以使纳米材料成为一种表面保持常规陶瓷材料的硬度和化学稳定性,而内部仍具有纳米材料的延展性的高性能陶瓷。(3)纳米半导体材料将硅、砷化镓等半导体材料制成纳米材料,具有许多优异性能。例如,纳米半导体中的量子隧道效应使某些半导体材料的电子输运反常、导电率降低,电导热系数也随颗粒尺寸的减小而下降,甚至出现负值。这些特性在大规模集成电路器件、光电器件等领域发挥重要的作用。利用半导体纳米粒子可以制备出光电转化效率高的、即使在阴雨天也能正常工作的新型太阳能电池。由于纳米半导体粒子受光照射时产生的电子和空穴具有较强的还原和氧化能力,因而它能氧化有毒的无机物,降解大多数有机物,最终生成无毒、无味的二氧化碳、水等,所以,可以借助半导体纳米粒子利用太阳能催化分解无机物和有机物。总之,纳米材料存在我们生活中一切事物之中,只是我们没有发现而已,就像鸽子大脑里的导航,生活的一些半导芯片,很多的精密仪器之中都可能存在纳米材料。纳米材料已经在我们身边大量事物中出现。它的应用前景非常广阔,我们应该更深一步的研究纳米材料,揭开其神秘的面纱。参考文献1.丁秉钧,《纳米材料》,普通高等教育材料科学与工程专业规划教材,2011-07-27;2.原继红,黄楠,韩晓云,康传红,孙治尧,闫尔云,纳米材料的应用,《绥化学院学报》2012年第1期184-186,3.王仁清,纳米材料的应用,《中国科技信息》,2004年第22期19,21,课程学习后的收获与建议:收获:自当学习了功能材料之后,我便从中更深一步了解到了材料的本质,这对我们材料专业的学生来说无疑是最有帮助的,我们是学习材料的,就必须从材料的多个层面去了解,并且熟悉材料,这样才可以更加熟悉的运用材料的特性,掌握材料的本质。学习本课程之后,我们便可以从只知道材料的一些浅显的的特性像更深一层的特性去了解掌握。例如导电陶瓷的原理,铁电体,压敏陶瓷,气敏陶瓷等等这些我们听过和没有见识过的材料和材料方面的其他知识。就拿形状记忆合金来说,我们能想到的是它会记忆自己的形态,就像之前学过的Ti合金一样,但是,却没有了解它的基本原理,不知道合金的这种记忆效应是由合金的“相变化”来实现的,随着温度的改变,合金的结构从一相转变到另一相。总而言之,学习这门课程对我们来说还是收益颇多的,对我们今后的学习工作都将有颇为重要的作用。建议:总的来说对这门课程还是比较感兴趣的,当初选这门课程就是冲着自己的兴趣去的,龙老师对这门课程也是投入了大量的精力,讲课也是相当认真负责;但是,由于课程内容比较抽象,同学们的热情并不是很高。要是实验的内容占大部分的比例,或许更容易去理解和感受,更有兴趣去了解功能材料。希望在今后的学习中,老师可以带领我们多去实验室,在动手过程中帮我们指导学习。
本文标题:功能材料论文
链接地址:https://www.777doc.com/doc-2225038 .html