您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 6-1-14-植树问题(二).教师版
6-1-3.植树问题(二).题库教师版page1of111.封闭与非封闭植树路线的讲解及生活运用。2.掌握空心方阵和实心方阵的变化规律.3.几何图形的设计与构造一、植树问题分两种情况:(一)不封闭的植树路线.①若题目中要求在植树的线路两端都植树,则棵数比段数多1.全长、棵数、株距之间的关系就为:棵数段数1全长株距1全长株距(棵数1)株距全长(棵数1)②如果题目中要求在路线的一端植树,则棵数就比在两端植树时的棵数少1,即棵数与段数相等.全长、棵数、株距之间的关系就为:全长株距棵数;棵数段数全长株距;株距全长棵数.③如果植树路线的两端都不植树,则棵数就比②中还少1棵.全长、棵数、株距之间的关系就为:棵数段数1全长株距1.株距全长(棵数1).全长株距(棵数+1)(二)封闭的植树路线.在圆、正方形、长方形、闭合曲线等上面植树,因为头尾两端重合在一起,所以种树的棵数等于分成的段数.全长、棵数、株距之间的关系就为:棵数段数周长株距.二、解植树问题的三要素(1)总路线长(2)间距(棵距)长(3)棵数,只要知道这三个要素中任意两个要素,就可以求出第三个.三、方阵问题(1)明确空心方阵和实心方阵的概念及区别.(2)每边的个数=总数÷41”;(3)每向里一层每边棋子数减少2;(4)掌握计算层数、每层个数、总个数的方法,及每层个数的变化规律。知识点拨教学目标5-1-3.植树问题(二)6-1-3.植树问题(二).题库教师版page2of11模块一、封闭图形的植树问题【例1】小强家附近的公园里有一个圆形池塘,它的周长1500是米,每隔3米栽种一棵树.问:共需树苗多少株?【考点】封闭图形的植树问题【难度】1星【题型】解答【解析】因为圆形池塘是一个封闭的模型,所以我们直接运用公式棵数=段数=周长÷株距,从而有树苗:1500÷3=500(株).【答案】500株【巩固】周叔叔家有一个长40米,宽30米的长方形鱼塘,他想沿塘每隔5米栽一棵柳树,需要栽多少棵柳树?【考点】封闭图形的植树问题【难度】1星【题型】解答【解析】40302140()(米),140528(棵).【答案】28棵【例2】在一个长345米、宽240米的长方形草坪四周等距离地栽一些松树,要求四个顶点和每边中点都正好栽一棵松树,则最少要买松树苗棵。【考点】封闭图形的植树问题【难度】2星【题型】填空【关键词】希望杯,五年级,二试,第9题【解析】先找出两边中点数120、172.5的最大公约数为7.5草坪周长为:(345+240)÷7.5=156(棵)【答案】156棵【例3】公园内有一个圆形花坛,绕着它走一圈是120米.如果沿着这一圈每隔6米栽一棵丁香花,再在每相邻的两株丁香花之间等距离地栽2株月季花,可栽丁香花多少株?可栽月季花多少株?两株相邻的丁香花之间的2株月季花相距多少米?【考点】封闭图形的植树问题【难度】2星【题型】解答【解析】在圆周上栽树时,由于开始栽的一棵与依次栽的最后一棵将会重合在一起,所以可栽的株数正好等于分成的段数.由于每相邻的两株丁香花之间等距离地栽2株月季花,所以栽月季花的株数等于2乘以段数的积.要求两株相邻的丁香花之间的2株月季花相距多少米?需要懂得两株相邻的丁香花之间等距离地栽2株月季花,就是说这4株花之间有3段相等的距离.以6米为一段,圆形花坛一圈可分的段数,即是栽丁香花的株数:120÷6=20(株),栽月季花的株数是:2×20=40(株),每段上丁香花和月季花的总株数是:2+2=4(株),4株花栽在6米的距离中,有3段相等的距离,每两株之间的距离是:6÷(4-1)=2(米).【答案】丁香花的株数20株,月季花的株数40株,两株相邻的丁香花之间的2株月季花相距2米。【巩固】一个圆形花坛,周长是180米.每隔6米种一棵芍药花,每相邻的两棵芍药花之间均匀地栽两棵月季花.问可栽多少棵芍药?多少棵月季?两棵月季之间的株距是多少米?【考点】封闭图形的植树问题【难度】2星【题型】解答【解析】①在圆形花坛上栽花,是封闭路线问题,其株数=段数.②由于相邻的两棵芍药花之间等距的栽有两棵月季,则每6米之中共有3棵花,且月季花棵数是芍药的2倍.解:共可栽芍药花:180630(棵)共种月季花:23060(棵)两种花共:306090(棵)两棵花之间距离:180902(米)相邻的花或者都是月季花或者一棵是月季花另一棵是芍药花,所以月季花的株距是2米或4米.【答案】芍药花30棵,月季花60棵,月季花的株距是2米或4米【巩固】在某校周长400米的环形跑道上,每隔8米插一面红旗,然后在相邻两面红旗之间每隔2米插一面黄旗,应准备红旗______面,黄旗______面.【考点】封闭图形的植树问题【难度】2星【题型】填空【解析】400850(红旗),8213,350150(黄旗)【答案】红旗50面,黄旗150面例题精讲6-1-3.植树问题(二).题库教师版page3of11【例4】大雪后的一天,小明和爸爸共同步测一个圆形花圃的周长.他俩的起点和走的方向完全相同,小明的平均步长是54厘米,爸爸的平均步长是72厘米,由于两人的脚印有重合,并且他们走了一圈后都回到起点,这时雪地上只留下60个脚印,这个花圃的周长是多少厘米?【考点】封闭图形的植树问题【难度】3星【题型】解答【解析】通过画图使学生明白从第一个重合点(起点)到下一个重合点之间的距离是216厘米,216544,216723,从而知在两个重合点之间,爸爸留下脚印3个,小明留下脚印4个,去掉一个重合的脚印,共留下脚印3416(个),因为从起点到最后雪地上共留下脚印60个,所以花圃的周长是216(606)2160(厘米).【答案】2160厘米【巩固】园林工人要在周长300米的圆形花坛边等距离地栽上树.他们先沿着花坛的边每隔3米挖一个坑,当挖完30个坑时,突然接到通知:改为每隔5米栽一颗树.这样,他们还要挖多少个坑才能完成任务?【考点】封闭图形的植树问题【难度】3星【题型】解答【解析】这道题的关键就在之间每3米一个,已经挖的坑,和后来改成5米挖一个坑,有多少个是重复不需要挖的,那么一步一步分析如下:(1)从第1个坑到第30个坑,共有多长?(301)387(米)(2)改为“每5米栽一棵树”,有多少坑仍然有用?8715512,516(个)(3)改为“每5米栽一棵树”,一共应挖多少个坑?300560(个)(4)还要挖多少个?60654(个)【答案】54个【例5】一个街心花园如右图所示.它由四个大小相等的等边三角形组成.已知从每个小三角形的顶点开始,到下一个顶点均匀栽有9棵花.问大三角形边上栽有多少棵花?整个花园中共栽多少棵花?【考点】封闭图形的植树问题【难度】3星【题型】解答【解析】大三角形三条边上共栽花:(9×2-1-1)×3=48(棵),中间画斜线小三角形三条边上栽花:(9-2)×3=21(棵),整个花坛共栽花:48+21=69(棵).【答案】69棵【例6】正方形操场四周栽了一圈树,四个角上都栽了树,每两棵树相隔5米.甲、乙从一个角上同时出发,向不同的方向走去,甲的速度是乙的2倍,乙在拐了一个弯之后的第5棵树与甲相遇(把角上的树看作第一棵树),操场四周栽了多少棵树?【考点】封闭图形的植树问题【难度】3星【题型】解答【解析】因为甲的速度是乙的两倍,乙走了操场的一条边,甲走了两条边,乙拐了一个弯之后走到第5棵树,实际走了4个间隔,那么甲应该走了8个间隔,相遇的树就是甲拐弯以后走的第9棵树,所以这一边有9+4=13(棵)树.操场周围的树一共有(13-1)×4=48(棵).【答案】48棵模块二、方阵问题【例7】在一次运动会开幕式上,有一大一小两个方阵合并变换成一个10行10列的方阵,求原来两个方阵各有多少人?【考点】方阵问题【难度】2星【题型】解答【解析】根据时间多少和学生具体情况可考虑教给学生平方数的概念,并记住一些简单的平方数.10行10列的方阵由100人组成,原来的小方阵每行或每列人数都不会超过10人,大方阵人数应该在50100~之间,可取64或81,运用枚举法,可求出满足条件的是:大方阵有64人,小方阵有36人.【答案】大方阵有64人,小方阵有36人【例8】小华观看团体操表演,他看到表演队伍中的一个方阵变换成一个正三角形实心队列,他估计队伍中人数大概在30至50人之间,你能告诉他到底有多少人吗?【考点】方阵问题【难度】3星【题型】解答6-1-3.植树问题(二).题库教师版page4of11【解析】方阵总人数的特点:它是两个相同自然数的积,而三角形队列总人数的特点是:总数是从1开始若干个连续自然数的和,我们只要在3050~的范围内找出同时满足这两个条件的数就可以得出总人数.由于队伍可以排成方阵,在30至50人的范围内人数可能是66=36人或77=49人,又因为361234849123494,,所以总人数是36人.【答案】36人【例9】同学们做操,小林站在左起第5列,右起第3列;从前数前面有4个同学,从后数后面有6个同学.每行每列的人数同样多,做操的同学一共有多少人?【考点】方阵问题【难度】2星【题型】解答【解析】带领学生画图求解.一共有几行?列式:4+6+1=11(行)一共有几列?列式:5317(列)一共有多少人?列式:11777(人)【答案】77人【巩固】一群小猴排成整齐的队伍做操,长颈鹿站在队伍旁边,一下子看到了他的好朋友金丝猴.长颈鹿数了数,金丝猴的左边有4只猴,右边也有4只猴,前面有5只猴,后面也有5只猴.小朋友,你能算出有多少只猴子在做操吗?【考点】方阵问题【难度】2星【题型】解答【解析】一共有多少行?列式:5+5+1=11(行)一共有多少列?列式:4+4+1=9(列)一共有多少只猴子?11999(只).【答案】99人【巩固】小朋友们做广播体操,小明恰好站在队列的正中心,此时无论是从前往后或者从后往前数他都排在第5个,无论是从左往右或者是从右往左数他都排在第6个,则这个队列中一共有________位小朋友.【考点】方阵问题【难度】2星【题型】填空【关键词】2008年,陈省身杯【解析】根据题意知:每列有5519(人),每行有66111(人),则这个队列共有:91199(人).【答案】99人【例10】希望小学举行运动会,全体运动员的编号是从1开始的连续整数,他们按图1中实线所示,从第1行第1列开始,按照编号从小到大的顺序排成一个方阵。小明的编号是28,他排在第3行第4列,则运动员共有人。图1第2行第1行第2列第1列【考点】方阵问题【难度】3星【题型】填空【关键词】希望杯,4年级,1试【解析】28号在第3行第4列,那么前两行共有28-4=24人,每行有24÷2=12人,共有12×12=144人。【答案】144人【例11】四年级一班同学参加了广播操比赛,排成每行8人,每列8人的方阵,问方阵中共有多少学生?如果去掉一行一列.还剩多少同学?【考点】方阵问题【难度】2星【题型】解答【解析】可以根据“实心方阵总人数=每边人数×每边人数”得到8行8列的实心方阵人数为:8864=(人),去掉一行一列后,还剩7行7列,也可通过同样的方法得出总人数为:77=49(人).6-1-3.植树问题(二).题库教师版page5of11【答案】8行8列的实心方阵人数为64人,去掉一行一列后,还剩49人。【巩固】100名同学排成一个方阵,后来又减去一行一列,问减少了多少人?【考点】方阵问题【难度】2星【题型】解答【解析】和前两题比仅仅是数量上的增加,此时可带领学生总结规律:去掉一行一列后要加上重复的那一个.100名同学排成一个方阵,后来又减去一行一列,剩下的是9行9列的方阵,即剩下81人,减少了19人.【答案】19人【巩固】军训的学生进行队列表演,排成了一个5行5列的正方形队列,如果去掉一行一列,要去掉多少人?【考点】方阵问题【难度】2星【题型】解答【解析】一行一列各5人,顶
本文标题:6-1-14-植树问题(二).教师版
链接地址:https://www.777doc.com/doc-2226421 .html