您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 咨询培训 > 立体几何--平行及位置关系教案
1第四章立体几何--平行及位置关系一.课标要求:1.平面的基本性质与推论借助长方体模型,在直观认识和理解空间点、线、面的位置关系的基础上,抽象出空间线、面位置关系的定义,并了解如下可以作为推理依据的公理和定理:◆公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内;◆公理2:过不在一条直线上的三点,有且只有一个平面;◆公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线;◆公理4:平行于同一条直线的两条直线平行;◆定理:空间中如果两个角的两条边分别对应平行,那么这两个角相等或互补。2.空间中的平行关系以立体几何的上述定义、公理和定理为出发点,通过直观感知、操作确认、思辨论证,认识和理解空间中线面平行、垂直的有关性质与判定。通过直观感知、操作确认,归纳出以下判定定理:◆平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;◆一个平面内的两条相交直线与另一个平面平行,则这两个平面平行;通过直观感知、操作确认,归纳出以下性质定理,并加以证明:◆一条直线与一个平面平行,则过该直线的任一个平面与此平面的交线与该直线平行;◆两个平面平行,则任意一个平面与这两个平面相交所得的交线相互平行;◆垂直于同一个平面的两条直线平行能运用已获得的结论证明一些空间位置关系的简单命题。二.命题走向立体几何在高考中占据重要的地位,通过近几年的高考情况分析,考察的重点及难点稳定,高考始终把直线与直线、直线与平面、平面与平面平行的性质和判定作为考察重点。在难度上也始终以中等偏难为主,在新课标教材中将立体几何要求进行了降低,重点在对图形及几何体的认识上,实现平面到空间的转化,示知识深化和拓展的重点,因而在这部分知识2点上命题,将是重中之重。预测2013年高考将以多面体为载体直接考察线面位置关系:(1)考题将会出现一个选择题、一个填空题和一个解答题;(2)在考题上的特点为:热点问题为平面的基本性质,考察线线、线面和面面关系的论证,此类题目将以客观题和解答题的第一步为主。三.要点精讲1.平面概述(1)平面的两个特征:①无限延展②平的(没有厚度)(2)平面的画法:通常画平行四边形来表示平面(3)平面的表示:用一个小写的希腊字母、、等表示,如平面、平面;用表示平行四边形的两个相对顶点的字母表示,如平面AC。2.三公理三推论:公理1:若一条直线上有两个点在一个平面内,则该直线上所有的点都在这个平面内:Al,Bl,A,Bl公理2:如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。公理3:经过不在同一直线上的三点,有且只有一个平面。推论一:经过一条直线和这条直线外的一点,有且只有一个平面。推论二:经过两条相交直线,有且只有一个平面。推论三:经过两条平行直线,有且只有一个平面。3.空间直线:(1)空间两条直线的位置关系:相交直线——有且仅有一个公共点;平行直线——在同一平面内,没有公共点;异面直线——不同在任何一个平面内,没有公共点。相交直线和平行直线也称为共面直线。异面直线的画法常用的有下列三种:(2)平行直线:在平面几何中,平行于同一条直线的两条直线互相平行,这个结论在空间也是成立的。即公理4:平行于同一条直线的两条直线互相平行。(3)异面直线定理:连结平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线。推理模式:,,,ABaBaAB与a是异面直线。ababab34.直线和平面的位置关系(1)直线在平面内(无数个公共点);(2)直线和平面相交(有且只有一个公共点);(3)直线和平面平行(没有公共点)——用两分法进行两次分类。它们的图形分别可表示为如下,符号分别可表示为a,aA,//a。aaAa线面平行的判定定理:如果不在一个平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。推理模式:,,////ababa.线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。推理模式://,,//aabab.5.两个平面的位置关系有两种:两平面相交(有一条公共直线)、两平面平行(没有公共点)(1)两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于一个平面,那么这两个平面平行。定理的模式://////ababPab推论:如果一个平面内有两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面互相平行。推论模式:,,,,,,//,////abPababPabaabb(2)两个平面平行的性质(1)如果两个平面平行,那么其中一个平面内的直线平行于另一个平面;(2)如果两个平行平面同时和第三个平面相交,那么它们的交线平行。四.典例解析题型1:共线、共点和共面问题例1.(1)如图所示,平面ABD平面BCD=直线BD,M、N、P、Q分别为线段AB、BC、CD、DA上的点,四边形MNPQ是以PN、QM为腰的梯形。试证明三直线BD、MQ、NP共点。babaPPabcba4(2)如图所示,在四边形ABCD中,已知AB∥CD,直线AB,BC,AD,DC分别与平面α相交于点E,G,H,F.求证:E,F,G,H四点必定共线。题型2:异面直线的判定与应用例2.(1)已知异面直线a,b所成的角为700,则过空间一定点O,与两条异面直线a,b都成600角的直线有()条A.1B.2C.3D.4(2)异面直线a,b所成的角为,空间中有一定点O,过点O有3条直线与a,b所成角都是600,则的取值可能是()A.300B.500C.600D.900题型3:线线平行的判定与性质例3.关于直线a、b、l及平面M、N,下列命题中正确的是()A.若a∥M,b∥M,则a∥bB.若a∥M,b⊥a,则b⊥MC.若aM,bM,且l⊥a,l⊥b,则l⊥MD.若a⊥M,a∥N,则M⊥NαDCBAEFHA.G5题型4:线面平行的判定与性质例4.如图,在长方体1111ABCDABCD中,,EP分别是11,BCAD的中点,,MN分别是1,AECD的中点,1,2ADAAaABa,求证://MN面11ADDA。题型5:面面平行的判定与性质例5.如图,正方体ABCD—A1B1C1D1的棱长为a。证明:平面ACD1∥平面A1C1B。五.思维总结在掌握直线与平面的位置关系(包括直线与直线、直线与平面、平面与平面间的位置关系)的基础上,研究有关平行的判定依据(定义、公理和定理)、判定方法及有关性质的应用;在有关问题的解决过程中,进一步了解和掌握相关公理、定理的内容和功能,并探索立体几何中论证问题的规律;在有关问题的分析与解决的过程中提高逻辑思维能力、空间想象能力及化归和转化的数学思想的应用.1.用类比的思想去认识面的垂直与平行关系,注意垂直与平行间的联系。2.注意立体几何问题向平面几何问题的转化,即立几问题平面化。3.注意下面的转化关系:64.直线和平面相互平行证明方法:○1证明直线和这个平面内的一条直线相互平行;○2证明这条直线的方向量和这个平面内的一个向量相互平行;○3证明这条直线的方向量和这个平面的法向量相互垂直。5.证明两平面平行的方法:(1)利用定义证明。利用反证法,假设两平面不平行,则它们必相交,再导出矛盾。(2)判定定理:一个平面内有两条相交直线都平行于另一个平面,则这两个平面平行,这个定理可简记为线面平行则面面平行。用符号表示是:a∩b,aα,bα,a∥β,b∥β,则α∥β。(3)垂直于同一直线的两个平面平行。用符号表示是:a⊥α,a⊥β则α∥β。(4)平行于同一个平面的两个平面平行。//,////两个平面平行的性质有五条:(1)两个平面平行,其中一个平面内的任一直线必平行于另一个平面,这个定理可简记为:“面面平行,则线面平行”。用符号表示是:α∥β,aα,则a∥β。(2)如果两个平行平面同时与第三个平面相交,那么它们的交线平行,这个定理可简记为:“面面平行,则线线平行”。用符号表示是:α∥β,α∩γ=a,β∩γ=b,则a∥b。(3)一条直线垂直于两平行平面中的一个平面,它也垂直于另一个平面。这个定理可用于证线面垂直。用符号表示是:α∥β,a⊥α,则a⊥β。(4)夹在两个平行平面间的平行线段相等。(5)过平面外一点只有一个平面与已知平面平行。
本文标题:立体几何--平行及位置关系教案
链接地址:https://www.777doc.com/doc-2239972 .html