您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 第25讲与圆有关的计算
第二十五讲与圆有关的计算【基础知识回顾】一、正多边形和圆:1、各边相等,也相等的多边形是正多边形2、每一个正多边形都有一个外接圆,外接圆的圆心叫正多边形的外接圆的半径叫正多边形的一般用字母R表示,每边所对的圆心角叫可用用α表示,α=,中心到正多边形一边的距离叫做正多边形的用r表示3、每一个正n边形都被它的半径分成n个全等的三角形,被它的半径和边心距分成个全等的三角形【名师提醒:正多边形的有关计算,一般是放在一个等腰三角形或一个直角三角形中进行,根据半径、边心距、边长、中心角等之间的边角关系作计算,以正三角形、正方形和正方边形为主】二、弧长与扇形面积计算:⊙O的半径为R,弧长为L,圆心角为n0,扇形的面积为S扇,则有如下公式:L=S扇==【名师提醒:1、以上几个公式都可进行变形,2、原公式中涉及的角都不带单位3、扇形的两个公式可根据已知条件灵活进行选择4、圆中的面积计算常见的是求阴影部分的面积,常用的方法有:⑴已知规则图形面积的和与差⑵割补法⑶等积变形法⑷平移法⑸旋转法等】三、圆柱和圆锥:1、如图:设圆柱的高为h,底面半径为R则有:⑴S圆柱侧=⑵S圆柱全=⑶V圆柱=2、如图:设圆锥的母线长为l,底面半径为R,高为h,则有:⑴S圆锥侧=、⑵S圆锥全=⑶V圆锥=【名师提醒:1、圆柱的高有条,圆锥的高有条2、圆锥的高h,母线长l,底高半径R满足关系3、注意圆锥的侧面展开圆中扇形的半径l是圆锥的,扇形的弧长是圆锥的4、圆锥的母线为l,底面半径为R,侧面展开图扇形的圆心角度数为n,若l=2r,则n=l=3r,则n=l=4r则n=】【典型例题解析】考点一:正多边形和圆例1(绵阳)如图,要拧开一个边长为a=6cm的正六边形螺帽,扳手张开的开口b至少为()A.6mmB.12mmC.63mmD.43mm对应训练1.(天津)正六边形的边心距与边长之比为()A.3:3B.3:2C.1:2D.2:2考点二:圆周长与弧长例2(黄冈)如图,矩形ABCD中,AB=4,BC=3,边CD在直线l上,将矩形ABCD沿直线l作无滑动翻滚,当点A第一次翻滚到点A1位置时,则点A经过的路线长为.对应训练2.(遵义)如图,将边长为1cm的等边三角形ABC沿直线l向右翻动(不滑动),点B从开始到结束,所经过路径的长度为()A.32πcmB.(2+32π)cmC.43πcmD.3cm考点三:扇形面积与阴影部分面积例3(重庆)如图,在边长为4的正方形ABCD中,以AB为直径的半圆与对角线AC交于点E,则图中阴影部分的面积为.(结果保留π)对应训练3.(乐山)如图,小方格都是边长为1的正方形,则以格点为圆心,半径为1和2的两种弧围成的“叶状”阴影图案的面积为.考点四:圆柱、圆锥的侧面展开图例4(遂宁)用半径为3cm,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥的底面半径为()A.2πcmB.1.5cmC.πcmD.1cm对应训练4.(攀枝花)一个圆锥的左视图是一个正三角形,则这个圆锥的侧面展开图的圆心角等于()A.60°B.90°C.120°D.180°考点五:圆的综合题例5(攀枝花)如图,PA为⊙O的切线,A为切点,直线PO交⊙O与点E,F过点A作PO的垂线AB垂足为D,交⊙O与点B,延长BO与⊙O交与点C,连接AC,BF.(1)求证:PB与⊙O相切;(2)试探究线段EF,OD,OP之间的数量关系,并加以证明;(3)若AC=12,tan∠F=12,求cos∠ACB的值.对应训练5.(茂名)如图,在⊙O中,弦AB与弦CD相交于点G,OA⊥CD于点E,过点B的直线与CD的延长线交于点F,AC∥BF.(1)若∠FGB=∠FBG,求证:BF是⊙O的切线;(2)若tan∠F=34,CD=a,请用a表示⊙O的半径;(3)求证:GF2-GB2=DF•GF.【聚焦山东中考】1.(滨州)若正方形的边长为6,则其外接圆半径与内切圆半径的大小分别为()A.6,32B.32,3C.6,3D.62,321.B2.(东营)如图,正方形ABCD中,分别以B、D为圆心,以正方形的边长a为半径画弧,形成树叶形(阴影部分)图案,则树叶形图案的周长为()A.πaB.2πaC.12πaD.3a3.(泰安)如图,AB,CD是⊙O的两条互相垂直的直径,点O1,O2,O3,O4分别是OA、OB、OC、OD的中点,若⊙O的半径为2,则阴影部分的面积为()A.8B.4C.4π+4D.4π-44.(济南)如图,扇形AOB的半径为1,∠AOB=90°,以AB为直径画半圆,则图中阴影部分的面积为()A.4B.π-12C.12D.4+125.(莱芜)将半径为3cm的圆形纸片沿AB折叠后,圆弧恰好能经过圆心O,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为()A.22B.2C.10D.326.(菏泽)在半径为5的圆中,30°的圆心角所对的弧长为(结果保留π).7.(聊城)已知一个扇形的半径为60cm,圆心角为150°,用它围成一个圆锥的侧面,那么圆锥的底面半径为cm.8.(青岛)如图,AB是⊙O的直径,弦AC=2,∠ABC=30°,则图中阴影部分的面积是.9.(枣庄)如图,AB是⊙O的直径,AC是弦,直线EF经过点C,AD⊥EF于点D,∠DAC=∠BAC.(1)求证:EF是⊙O的切线;(2)求证:AC2=AD•AB;(3)若⊙O的半径为2,∠ACD=30°,求图中阴影部分的面积.10.(莱芜)如图,⊙O的半径为1,直线CD经过圆心O,交⊙O于C、D两点,直径AB⊥CD,点M是直线CD上异于点C、O、D的一个动点,AM所在的直线交于⊙O于点N,点P是直线CD上另一点,且PM=PN.(1)当点M在⊙O内部,如图一,试判断PN与⊙O的关系,并写出证明过程;(2)当点M在⊙O外部,如图二,其它条件不变时,(1)的结论是否还成立?请说明理由;(3)当点M在⊙O外部,如图三,∠AMO=15°,求图中阴影部分的面积.【备考真题过关】一、选择题1.(淮安)若扇形的半径为6,圆心角为120°,则此扇形的弧长是()A.3πB.4πC.5πD.6π2.(天门)如果一个扇形的弧长是43π,半径是6,那么此扇形的圆心角为()A.40°B.45°C.60°D.80°3.(义乌)已知圆锥的底面半径为6cm,高为8cm,则这个圆锥的母线长为()A.12cmB.10cmC.8cmD.6cm4.(乌鲁木齐)如图是某几何体的三视图,则该几何体的体积是()A.πB.2πC.3πD.4π5.(南通)用如图所示的扇形纸片制作一个圆锥的侧面,要求圆锥的高是4cm,底面周长是6πcm,则扇形的半径为()A.3cmB.5cmC.6cmD.8cm6.(黄石)已知直角三角形ABC的一条直角边AB=12cm,另一条直角边BC=5cm,则以AB为轴旋转一周,所得到的圆锥的表面积是()A.90πcm2B.209πcm2C.155πcm2D.65πcm26.A7.(舟山)如图,某厂生产横截面直径为7cm的圆柱形罐头,需将“蘑菇罐头”字样贴在罐头侧面.为了获得较佳视觉效果,字样在罐头侧面所形成的弧的度数为90°,则“蘑菇罐头”字样的长度为()A.4cmB.74cmC.72cmD.7πcm8.(南宁)如图,圆锥形的烟囱底面半径为15cm,母线长为20cm,制作这样一个烟囱帽所需要的铁皮面积至少是()A.150πcm2B.300πcm2C.600πcm2D.150πcm29.(台州)如图,已知边长为2的正三角形ABC顶点A的坐标为(0,6),BC的中点D在y轴上,且在点A下方,点E是边长为2,中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE的最小值为()A.3B.4-3C.4D.6-2310.(贵港)如图,已知圆锥的母线长为6,圆锥的高与母线所夹的角为θ,且sinθ=13,则该圆锥的侧面积是()A.242πB.24πC.16πD.12π11.(襄阳)如图,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E、B,E是半圆弧的三等分点,弧BE的长为23π,则图中阴影部分的面积为()A.9B.39C.33322D.3322313.(许昌一模)已知:如图,在△ABC中,AB=AC,以AB为直径的半圆O交BC于D,AC于E,连接AD、BE交于点M,过点D作DF⊥AC于F,DH⊥AB于H,交BE于G,下列结论:①BD=CD;②DF是⊙O的切线;③∠DAC=∠BDH;④DG=12BM.成立的个数()A.1个B.2个C.3个D.4个二、填空题14.(徐州)已知扇形的圆心角为120°,弧长为10πcm,则扇形的半径为cm.15.(茂名)如图是李大妈跳舞用的扇子,这个扇形AOB的圆心角∠O=120°,半径OA=3,则弧AB的长度为(结果保留π).16.(重庆)如图,一个圆心角为90°的扇形,半径OA=2,那么图中阴影部分的面积为(结果保留π).17.(2013•孝感)用半径为10cm,圆心角为216°的扇形做成一个圆锥的侧面,则这个圆锥的高为cm.18.(宿迁)已知圆锥的底面周长是10π,其侧面展开后所得扇形的圆心角为90°,则该圆锥的母线长是.19.(玉林)如图,实线部分是半径为15m的两条等弧组成的游泳池,若每条弧所在的圆都经过另一个圆的圆心,则游泳池的周长是m.20.(徐州)如图,在正八边形ABCDEFGH中,四边形BCFG的面积为20cm2,则正八边形的面积为cm2.21.(南京)△OAB是以正多边形相邻的两个顶点A,B与它的中心O为顶点的三角形,若△OAB的一个内角为70°,则该正多边形的边数为.22.(盘锦)如图,张老师在上课前用硬纸做了一个无底的圆锥形教具,那么这个教具的用纸面积是cm2.(不考虑接缝等因素,计算结果用π表示).23.(泸州)如图,从半径为9cm的圆形纸片上剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为m.24.(内江)如图,正六边形硬纸片ABCDEF在桌面上由图1的起始位置沿直线l不滑行地翻滚一周后到图2位置,若正六边形的边长为2cm,则正六边形的中心O运动的路程为cm.25.(凉山州)如图,Rt△ABC中,∠C=90°,AC=8,BC=6,两等圆⊙A,⊙B外切,那么图中两个扇形(即阴影部分)的面积之和为.26.(福州)如图,由7个形状、大小完全相同的正六边形组成网格,正六边形的顶点称为格点.已知每个正六边形的边长为1,△ABC的顶点都在格点上,则△ABC的面积是.27.(衢州)如图,将一块三角板和半圆形量角器按图中方式叠放,三角板一边与量角器的零刻度线所在直线重合,重叠部分的量角器弧(»AB)对应的圆心角(∠AOB)为120°,OC的长为2cm,则三角板和量角器重叠部分的面积为.28.(宿迁)如图,AB是半圆O的直径,且AB=8,点C为半圆上的一点.将此半圆沿BC所在的直线折叠,若圆弧BC恰好过圆心O,则图中阴影部分的面积是.(结果保留π)29.(长春)如图,在平面直角坐标系中,边长为6的正六边形ABCDEF的对称中心与原点O重合,点A在x轴上,点B在反比例函数kyx位于第一象限的图象上,则k的值为.30.(遵义)如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,E为BC边上的一点,以A为圆心,AE为半径的圆弧交AB于点D,交AC的延长于点F,若图中两个阴影部分的面积相等,则AF的长为(结果保留根号).31.(乐亭县一模)如图,已知直线y=x+4与两坐标轴分别交于A、B两点,⊙C的圆心坐标为(2,O),半径为2,若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值和最大值分别是.32.(玉林)如图,△ABC是⊙O内接正三角形,将△ABC绕点O顺时针旋转30°得到△DEF,DE分别交AB,AC于点M,N,DF交AC于点Q,则有以下结论:①∠DQN=30°;②△DNQ≌△ANM;③△DNQ的周长等于AC的长;④NQ=QC.其中正确的结论是.(把所有正确的结论的序号都填上)三、解答题33.(佛山)如图,圆锥的侧面展开图是一
本文标题:第25讲与圆有关的计算
链接地址:https://www.777doc.com/doc-2246315 .html