您好,欢迎访问三七文档
第二章平面力系1.分析图示平面任意力系向O点简化的结果。已知:F1=100N,F2=150N,F3=200N,F4=250N,F=F/=50N。解:(1)主矢大小与方位:F/Rx=∑Fx=F1cos45º+F3+F4cos60º=100Ncos45º+200N+250cos60º=395.7NF/Ry=∑Fy=F1sin45º-F2-F4sin60º=100Nsin45º-150N-250sin60º=-295.8N(2)主矩大小和转向:MO=∑MO(F)=MO(F1)+MO(F2)+MO(F3)+MO(F4)+m=0-F2×0.3m+F3×0.2m+F4sin60×0.1m+F×0.1m=0-150N×0.3m+200N×0.2m+250Nsin60×0.1m+50N×0.1m=21.65N·m()向O点的简化结果如图所示。2.图示起重吊钩,若吊钩点O处所承受的力偶矩最大值为5kN·m,则起吊重量不能超过多少?解:根据O点所能承受的最大力偶矩确定最大起吊重量G×0.15m=5kN·mG=33.33kN3.图示三角支架由杆AB,AC铰接而成,在A处作用有重力G,求出图中AB,AC所受的力(不计杆自重)。解:(1)取销钉A画受力图如图所示。AB、AC杆均为二力杆。(2)建直角坐标系,列平衡方程:∑Fx=0,-FAB+FACcos60°=0∑Fy=0,FACsin60°-G=0(3)求解未知量。FAB=0.577G(拉)FAC=1.155G(压)4.图示三角支架由杆AB,AC铰接而成,在A处作用有重力G,求出图中AB,AC所受的力(不计杆自重)。解(1)取销钉A画受力图如图所示。AB、AC杆均为二力杆。(2)建直角坐标系,列平衡方程:∑Fx=0,FAB-FACcos60°=0∑Fy=0,FACsin60°-G=0(3)求解未知量。FAB=0.577G(压)FAC=1.155G(拉)5.图示三角支架由杆AB,AC铰接而成,在A处作用有重力G,求出图中AB,AC所受的力(不计杆自重)。解(1)取销钉A画受力图如图所示。AB、AC杆均为二力杆。(2)建直角坐标系,列平衡方程:∑Fx=0,-FAB+Gsin30°=0∑Fy=0,FAC-Gcos30°=0(3)求解未知量。FAB=0.5G(拉)FAC=0.866G(压)6.图示三角支架由杆AB,AC铰接而成,在A处作用有重力G,求出图中AB,AC所受的力(不计杆自重)。解(1)取销钉A画受力图如图所示。AB、AC杆均为二力杆。(2)建直角坐标系,列平衡方程:∑Fx=0,-FABsin30°+FACsin30°=0∑Fy=0,FABcos30°+FACcos30°-G=0(3)求解未知量。FAB=FAC=0.577G(拉)7.图示圆柱A重力为G,在中心上系有两绳AB和AC,绳子分别绕过光滑的滑轮B和C,并分别悬挂重力为G1和G2的物体,设G2>G1。试求平衡时的α角和水平面D对圆柱的约束力。解(1)取圆柱A画受力图如图所示。AB、AC绳子拉力大小分别等于G1,G2。(2)建直角坐标系,列平衡方程:∑Fx=0,-G1+G2cosα=0∑Fy=0,FN+G2sinα-G=0(3)求解未知量。8.图示翻罐笼由滚轮A,B支承,已知翻罐笼连同煤车共重G=3kN,α=30°,β=45°,求滚轮A,B所受到的压力FNA,FNB。有人认为FNA=Gcosα,FNB=Gcosβ,对不对,为什么?解(1)取翻罐笼画受力图如图所示。(2)建直角坐标系,列平衡方程:∑Fx=0,FNAsinα-FNBsinβ=0∑Fy=0,FNAcosα+FNBcosβ-G=0(3)求解未知量与讨论。将已知条件G=3kN,α=30°,β=45°分别代入平衡方程,解得:FNA=2.2kNFNA=1.55kN有人认为FNA=Gcosα,FNB=Gcosβ是不正确的,只有在α=β=45°的情况下才正确。9.图示简易起重机用钢丝绳吊起重力G=2kN的重物,不计杆件自重、摩擦及滑轮大小,A,B,C三处简化为铰链连接;求AB和AC所受的力。解(1)取滑轮画受力图如图所示。AB、AC杆均为二力杆。(2)建直角坐标系如图,列平衡方程:∑Fx=0,-FAB-Fsin45°+Fcos60°=0∑Fy=0,-FAC-Fsin60°-Fcos45°=0(3)求解未知量。将已知条件F=G=2kN代入平衡方程,解得:FAB=-0.414kN(压)FAC=-3.15kN(压)10.图示简易起重机用钢丝绳吊起重力G=2kN的重物,不计杆件自重、摩擦及滑轮大小,A,B,C三处简化为铰链连接;求AB和AC所受的力。解:(1)取滑轮画受力图如图所示。AB、AC杆均为二力杆。(2)建直角坐标系如图,列平衡方程:∑Fx=0,-FAB-FACcos45°-Fsin30°=0∑Fy=0,-FACsin45°-Fcos30°-F=0(3)求解未知量。将已知条件F=G=2kN代入平衡方程,解得:FAB=2.73kN(拉)FAC=-5.28kN(压)11.相同的两圆管置于斜面上,并用一铅垂挡板AB挡住,如图所示。每根圆管重4kN,求挡板所受的压力。若改用垂直于斜面上的挡板,这时的压力有何变化?解(1)取两圆管画受力图如图所示。(2)建直角坐标系如图,列平衡方程:∑Fx=0,FNcos30°-Gsin30°-Gsin30°=0(3)求解未知量。将已知条件G=4kN代入平衡方程,解得:FN=4.61kN若改用垂直于斜面上的挡板,这时的受力上图右建直角坐标系如图,列平衡方程:∑Fx=0,FN-Gsin30°-Gsin30°=0解得:FN=4kN12.构件的支承及荷载如图所示,求支座A,B处的约束力。解(1)取AB杆画受力图如图所示。支座A,B约束反力构成一力偶。(2)列平衡方程:∑Mi=015kN·m-24kN·m+FA×6m=0(3)求解未知量。FA=1.5kN(↓)FB=1.5kN13.构件的支承及荷载如图所示,求支座A,B处的约束力。解(1)取AB杆画受力图如图所示。支座A,B约束反力构成一力偶。(2)列平衡方程:∑Mi=0,FA×lsin45°-F×a=0(3)求解未知量。14.构件的支承及荷载如图所示,求支座A,B处的约束力。解(1)取AB杆画受力图如图所示。支座A,B约束反力构成一力偶。(2)列平衡方程:∑Mi=0,20kN×5m-50kN×3m+FA×2m=0(3)求解未知量。FA=25kN(↓)FB=25kN(↑)15.图示电动机用螺栓A,B固定在角架上,自重不计。角架用螺栓C,D固定在墙上。若M=20kN·m,a=0.3m,b=0.6m,求螺栓A,B,C,D所受的力。解螺栓A,B受力大小(1)取电动机画受力图如图所示。螺栓A,B反力构成一力偶。(2)列平衡方程:∑Mi=0,-M+FA×a=0(3)求解未知量。将已知条件M=20kN·m,a=0.3m代入平衡方程,解得:FA=FB=66.7kN螺栓C,D受力大小(1)取电动机和角架画受力图如图所示。螺栓C,D反力构成一力偶。(2)列平衡方程:∑Mi=0,-M+FC×b=0(3)求解未知量。将已知条件M=20kN·m,b=0.6m代入平衡方程,解得:FC=FD=33.3kN16.铰链四连杆机构OABO1在图示位置平衡,已知OA=0.4m,O1B=0.6m,作用在曲柄OA上的力偶矩M1=1N·m,不计杆重,求力偶矩M2的大小及连杆AB所受的力。解求连杆AB受力(1)取曲柄OA画受力图如图所示。连杆AB为二力杆。(2)列平衡方程:∑Mi=0,-M1+FAB×OAsin30º=0(3)求解未知量。将已知条件M1=1N·m,OA=0.4m,代入平衡方程,解得:FAB=5N;AB杆受拉。求力偶矩M2的大小(1)取铰链四连杆机构OABO1画受力图如图所示。FO和FO1构成力偶。(2)列平衡方程:∑Mi=0,-M1+M2-FO×(O1B-OAsin30º)=0(3)求解未知量。将已知条件M1=1N·m,OA=0.4m,O1B=0.6m代入平衡方程,解得:M2=3N·m17.上料小车如图所示。车和料共重G=240kN,C为重心,a=1m,b=1.4m,e=1m,d=1.4m,α=55°,求钢绳拉力F和轨道A,B的约束反力。解(1)取上料小车画受力图如图所示。(2)建直角坐标系如图,列平衡方程:∑Fx=0,F-Gsinα=0∑Fy=0,FNA+FNB-Gcosα=0∑MC(F)=0,-F×(d-e)-FNA×a+FNB×b=0(3)求解未知量。将已知条件G=240kN,a=1m,b=1.4m,e=1m,d=1.4m,α=55°代入平衡方程,解得:FNA=47.53kN;FNB=90.12kN;F=196.6kN18.厂房立柱的一端用混凝土砂浆固定于杯形基础中,其上受力F=60kN,风荷q=2kN/m,自重G=40kN,a=0.5m,h=10m,试求立柱A端的约束反力。解(1)取厂房立柱画受力图如图所示。A端为固定端支座。(2)建直角坐标系如图,列平衡方程:∑Fx=0,q×h-FAx=0∑Fy=0,FAy-G-F=0∑MA(F)=0,-q×h×h/2-F×a+MA=0(3)求解未知量。将已知条件F=60kN,q=2kN/m,G=40kN,a=0.5m,h=10m代入平衡方程,解得:FAx=20kN(←);FAy=100kN(↑);MA=130kN·m()19.试求图中梁的支座反力。已知F=6kN。解(1)取梁AB画受力图如图所示。(2)建直角坐标系,列平衡方程:∑Fx=0,FAx-Fcos45º=0∑Fy=0,FAy-Fsin45º+FNB=0∑MA(F)=0,-Fsin45º×2m+FNB×6m=0(3)求解未知量。将已知条件F=6kN代入平衡方程。解得:FAx=4.24kN(→);FAy=2.83kN(↑);FNB=1.41kN(↑)。20.试求图示梁的支座反力。已知F=6kN,q=2kN/m。解(1)取梁AB画受力图如图所示。(2)建直角坐标系,列平衡方程:∑Fx=0,FAx-Fcos30º=0∑Fy=0,FAy-q×1m-Fsin30º=0∑MA(F)=0,-q×1m×1.5m-Fsin30º×1m+MA=0(3)求解未知量。将已知条件F=6kN,q=2kN/m代入平衡方程,解得:FAx=5.2kN(→);FAy=5kN(↑);MA=6kN·m()。21.试求图示梁的支座反力。已知q=2kN/m,M=2kN·m。解(1)取梁AB画受力图如图所示。因无水平主动力存在,A铰无水平反力。(2)建直角坐标系,列平衡方程:∑Fy=0,FA-q×2m+FB=0∑MA(F)=0,-q×2m×2m+FB×3m+M=0(3)求解未知量。将已知条件q=2kN/m,M=2kN·m代入平衡方程,解得:FA=2kN(↑);FB=2kN(↑)。22.试求图示梁的支座反力。已知q=2kN/m,l=2m,a=1m。解(1)取梁AB画受力图如图所示。(2)建直角坐标系,列平衡方程:∑Fx=0,FAx-q×a=0∑Fy=0,FAy=0∑MA(F)=0,-q×a×0.5a+MA=0(3)求解未知量。将已知条件q=2kN/m,M=2kN·m,a=1m代入平衡方程,解得:FAx=2kN(→);FAy=0;MA=1kN·m()。23.试求图示梁的支座反力。已知F=6kN,q=2kN/m,M=2kN·m,a=1m。解(1)取梁AB画受力图如图所示。因无水平主动力存在,A铰无水平反力。(2)建直角坐标系,列平衡方程:∑Fy=0,FA-q×a+FB-F=0∑MA(F)=0,q×a×0.5a+FB×2a-M-F×3a=0(3)求解未知量。将已知条件F=6kN,q=2kN/m,M=2kN·m,a=1m代入平衡方程,解得:FA=-1.5kN(↓);FB=9.5kN(↑)。24.试求图示梁的支座反力。已知F=6kN,M=2kN·m,a=1m。解(1)取梁AB画受力图如图所示。(2)建直角坐标系,列平衡方程:∑Fx=0,FA-FBx=0∑Fy=0,FBy-F=0∑MB(F
本文标题:第2章 平面力系
链接地址:https://www.777doc.com/doc-2246605 .html