您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 工程监理 > 泰勒中值定理有关资料
在数学中,泰勒公式是一个用函数在某点的信息描述其附近取值的公式。如果函数足够光滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。泰勒公式还给出了这个多项式和实际的函数值之间的偏差。考虑用多项式去近似地表示一个复杂函数。自然底数e的具体数值是怎么算来的?使用Taylor公式的条件是:f(x)n阶可导。其中o((x-x0)^n)表示比无穷小(x-x0)^n更高阶的无穷小。Taylor公式最典型的应用就是求任意函数的近似值。Taylor公式还可以求等价无穷小,证明不等式,求极限等我们知道f(x)=f(x.)+f'(x.)(x-x.)+α(根据拉格朗日中值定理导出的有限增量定理有limΔx→0f(x.+Δx)-f(x.)=f'(x.)Δx),其中误差α是在limΔx→0即limx→x.的前提下才趋向于0,所以在近似计算中往往不够精确;于是我们需要一个能够足够精确的且能估计出误差的多项式:我们选取多项函数作为逼近的简单函数,理由很简单:在众多初等函数中,如三角函数,指数函数,对数函数,多项函数等,从算术的观点来看,以多项函数最为简单,因为要计算多项函数的值,只牵涉到加减乘除四则运算,其它函数就没有这么简单.泰勒公式的初衷是用多项式来近似表示函数在某点周围的情况。比如说,指数函数ex在x=0的附近可以用以下多项式来近似地表示:称为指数函数在0处的n阶泰勒展开公式。这个公式只对0附近的x有用,x离0越远,这个公式就越不准确。实际函数值和多项式的偏差称为泰勒公式的余项。对于一般的函数,泰勒公式的系数的选择依赖于函数在一点的各阶导数值。这个想法的原由可以由微分的定义开始。微分是函数在一点附近的最佳线性近似:,其中是比h高阶的无穷小。也就是说,或。注意到和在a处的零阶导数和一阶导数都相同。对足够光滑的函数,如果一个多项式在a处的前n次导数值都与函数在a处的前n次导数值重合,那么这个多项式应该能很好地近似描述函数在a附近的情况。以下定理说明这是正确的:定理:设n是一个正整数。如果定义在一个包含a的区间上的函数f在a点处n+1次可导,那么对于这个区间上的任意x,都有:[2]其中的多项式称为函数在a处的泰勒展开式,剩余的是泰勒公式的余项,是的高阶无穷小。的表达形式有若干种,分别以不同的数学家命名。
本文标题:泰勒中值定理有关资料
链接地址:https://www.777doc.com/doc-2262309 .html