您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 直接数字化放射摄影系统(DR)的发展及技术现状
直接数字化放射摄影系统(DR)的发展及技术现状直接数字化放射摄影(DigitalRadiography,简称DR),是上世纪九十年代发展起来的X线摄影新技术,具有更快的成像速度、更便捷的操作、更高的成像分辨率等显著优点,成为数字X线摄影技术的主导方向,并得到世界各国的临床机构和影像学专家认可。近年来随着技术及设备的日益成熟,DR在世界范围内得以迅速推广和普及应用,逐渐成为医院的必备设备之一。临床界和工程界专家普遍认为,DR设备将成为高水平数字化影像设备的终极产品。DR主要由X-线发生器(球管)、探测器(影像板/采样器)、采集工作站(采像处理计算机/后处理工作站)、机械装置等四部分组成;DR之所以称为“直接数字化放射摄影”的实质就是不用中间介质直接拍出数字X-光像;其工作过程是:X线穿过人体(备查部位)投射到探测器上,然后探测器将X线影像信息直接转化为数字影像信息并同步传输到采集工作站上,最后利用工作站的医用专业软件进行图像的后处理。DR系统能够有效降低临床医生的劳动强度,提高劳动效率,加快患者流通速度;相对于普通的屏/胶系统来说,采用数字技术的DR,具有动态范围广、曝光宽容度宽的特点,因而允许摄影中的技术误差,即使在一些曝光条件难以掌握的部位,也能获得很好的图像;由于直接数字化的结果,拍摄的X光片信息量大大丰富,可以根据临床需要进行各种图像后处理,如各种图像滤波、窗宽窗位调节、放大漫游、图像拼接以及距离、面积、密度测量等丰富的功能,为影像诊断中的细节观察、前后对比、定量分析提供技术支持,改变了以往X光平片固定影像的局限性,提供了大量临床诊断信息;由于其大尺寸、多像素成像板的贡献,大大提高了X光胶片的清晰度及细节分辨率,成像综合水平远远超过普通X光平片;同时有助于实现普通X线摄影图像的数字化存储和远距离调阅、交流等方便应用。依据探测器的构成材料和工作原理,DR主要分为三大技术:CCD、一线扫描、非晶体平板(非晶硒、非晶硅+碘化铯/非晶硅+氧化钆)。一、CCD:由于物理局限性,专家们普遍认为大面积平板采像CCD技术不胜任,而且CCD设备在图像质量上较非晶硅/硒平板设备有一定差距,但是相对有价格优势;世界上还有几个厂家用此技术如Swissray。二、一线扫描:也称一维线扫描技术,由俄罗斯科学院核物理研究所发明,也就是国内中兴航天在生产的DR;有受照剂量低、设备造价相对平板技术更低廉的优点,但也存在成像时间长(数秒)、空间分辨率低(刚推出时是1mm/lp)以及X线使用效率低的致命缺陷;成像质量较差而且病人会接受大量不必要的辐射。三、非晶平板:非晶硒/非晶硅;主要由非晶硒层(a-Se)/非晶硅层(a-Si)加薄膜半导体阵列(TFT)构成。1.a-Si(非晶硅平板探测器)--两步数字转换技术,X-光子先变成可见光然后用光电管探测而转化为数字信号。主流厂商包括飞利浦、西门子、GE等。因为涂层技术不同又分为非晶硅+碘化铯平板和非晶硅+氧化钆平板。2.a-Se(非晶硒平板探测器)--一种所谓直接探测技术,X-光子在硒涂料层变成电信号被探测而直接转化为数字信号。目前世界上只有美国Hologic公司拥有此技术的核心,柯达,国内友通等厂家的DR就使用这种探测器。DR的技术进步是紧紧与影像板技术的发展相联系的。平板的技术发展体现在两个方面:尺寸的大小及动态反应时间。碘化铯/非晶硅型平板在这两方面都具有其他技术不可比拟的优势,是目前最成熟最主流的技术,目前世界上主要领先厂家都用这种技术。*碘化铯/非晶硅(CsI)+a-Si+TFT:X射线入射到CsI闪烁发光晶体层时,X射线光子能量转化为可见光子发射,可见光激发光电二极管产生电流,这电流就在光电二极管自身的电容上积分形成储存电荷;每个象素的储存电荷量和与之对应范围内的入射X射线光子能量与数量成正比;成像速度、影像质量、工作效率等综合水平教高。*氧化钆/非晶硅(Gd2O2S)+a-Si+TFT:工作过程与上相似,只是碘化铯被氧化钆取代;由于技术原因其原始图像为12Bit/4096灰阶,A/D转换为14Bit;工艺成本较低,但综合技术水平比碘化铯板差。*非晶硒a-Se+TFT:入射的X射线光子在硒层中产生电子空穴对,在外加偏压电场作用下,电子和空穴对向相反的方向移动形成电流,电流在薄膜晶体管中积分成为储存电荷;每一个晶体管的储存电荷量对应于入射的X射线光子的能量与数量;工艺成本较低,但对入射X线吸收不佳,成像速度及稳定性等综合技术水平较非晶硅平板差。探测器技术生产厂商代表厂家技术特点备注非晶硅+碘化铯(CsI+a-Si+TFT)法国Trixell(飞利浦/西门子/汤姆逊合资)飞利浦西门子特殊工艺的Csl柱状晶体结构闪烁体涂层;对X线吸收极好,有效减少可见光的闪射,像素尺寸小,分辨率高,成像速度快,影像质量极佳;综合技术水平很高,是世界公认最成熟最高端的DR平板技术。工艺复杂难以生成大面积平板,采用四块小板拼接成17″×17″大块平板,拼接处图像由软件弥补。美国GE(收购EG&G的工业板技术转医疗用)GE非柱状晶体结构普通Csl涂层,可见光的闪射现象较为严重,能量损失较为严重;工艺成本较低;但有效尺寸较小,像素尺寸为较大,刷新速度较慢,图象质量较差。其平板采用工业板技术;工作过程中发热量很大,需要专门的水冷装置。Varian公司万东、上医、长青、泛太Varian平板视野太小,应用范围很窄。很大局限性而且影像质量不佳非晶硅+氧化钆(Gd2O2S+a-Si+TFT)日本佳能美国瓦里安佳能东芝岛津利用増感屏硫氧化钆(Gd2O2S)材料来完成X射线光子至可见光的转换过程。成像快速、成本较低,但一般灰阶动态范围较低(12bit以下),与其它高阶14bit产品图像诊断质量相比较为不足;能量损失较Trixell严重。俗称“佳能板”;影像质量较差,无法真正满足医学诊断要求。非晶硒美国Hologic(收购D.R.C公司DirectRay技术)新医科技Hologic柯达珠海友通沈阳东软北京东健非晶硒平板存在的缺陷包括温度适应性差以及成像速度慢。Hologic平板对温度等环境要求较为严格,容易被冻坏出现坏点(国内很多用户平板出现坏点);成像时间长而且影像质量稳定性不够好。台湾新医科技在技术上取得一些进展,使其非晶硒探测板对温度环境敏感和成像速度慢的缺点有所改善,但其仍然无法保证稳定的影像质量,使用过程中平板损毁率仍然居高不下;其“床边型”平板能够满足小医院现有X线设备改造为DR的要求。不成熟技术;成像质量不稳定;最主要技术拥有者Hologic由于其硒涂料层技术不过关致使其平板经常出现问题,已经退出国际DR系统市场;新医公司重点转向生产便携式、低要求DR平板。一线扫描俄国科学院核物理研究中兴航天采用狭缝式线扫描技术和高灵敏度的线阵探测器。球管发出的平面扇形X射线束穿过人体到达探测器,得到一行信号数据,在扫描机构的帮助下,球管和探测器平行自上而下匀速移动,逐行扫描,将一行行的数据经过全称”多丝正比室一维线扫描技术”,存在的缺点是曝光时间过长,像素矩计算机处理、重建后就得到一幅平面数字图像。阵、空间分辨率等指标都不高。Fisher公司采用条状CCD结构的探测器技术,由将X光子转换为可见光的闪烁体和四片CCD构成,利用线扫描方式完成数据收集。CCD(CsI/Gd2O2S+透镜/光导纤维+CCD/CMOS)加拿大IDC德国Imix俄国Electron瑞士swissway荷兰Nucletron韩国T.I.T.C韩国Raysis美国Phoxxo法国斯达福X射线先通过闪烁体或荧光体构成的可见光转换屏,将X射线光子变为可见光图像,而后通过透镜或光导纤维将可见光图像送至光学系统,由CCD采集转换为图像电信号。技术落后,影像质量差;无法与TFT板技术竞争,面临淘汰。CMOS(CsI/Gd2O2S+CMOS)CaresBuiltTradix受制于间接能量转换空间分辨率较差的缺点,虽利用大量低解像度CMOS探头组成大面积矩阵,尚无法有效与TFT平板优势竞争。技术非常落后,影像质量差;已经开始淘汰。注:目前,世界相关专家普遍认可成熟的非晶硅+碘化铯平板探测器技术;Trixell公司生产的平板探测器,因其稳定优秀的成像特质和良好的环境适应性成为DR设备的首选;由于采用世界最佳的平板探测器技术,辅以高质量球管和出色机械性能,加上功能强大的专业级后处理工作站,飞利浦/西门子成为世界公认的DR系统顶级品牌。1、探测器:对于直接数字化X射线摄影技术来讲,决定其图像质量不仅仅是平板所采用的技术类型,同时还有平板的DQE、采集矩阵、采集灰阶、空间分辨率、最小像素尺寸等重要因素,每个因素都很重要;在相同的图像尺寸时,采集矩阵越大,像素尺寸越小,图像分辨率越高,细小组织结构才能更好显示。(1)材料/技术类型:碘化铯/非晶硅为主流;其中以Trixell平板为最佳。(2)有效尺寸:主流为17×17in或14×17in;17×17in可满足99%的病人包扩体胖病人,可一次暴光成像;而14×17in有23%的病人不能满足,需二次曝光,增加病人射线损伤,增加技术人员工作强度。(3)像素矩阵:主流为2.5K×3K或3K×3K。(4)像素尺寸:143μm/200μm;像素尺寸大小直接影响图像细腻度。(5)空间分辨率:决定因素是探测器的尺寸和量子噪声,这从物理意义上是决定因素(当然从软件上可以内插算法得到更小的像素数,但这不是真实的像的信号,是推算的结果);此外,射线的质量是一个不可忽视的因数。所有平板中Trixell平板尺寸最大,量子噪声最小。(6)灰阶:主流是14Bit/16,384灰阶,只有Canon等少数公司的探测板为原始图像为12Bit/4096灰阶,A/D转换为14Bit。(7)探测量子效率(DQE):是输入信号转导成输出信号的效率,高探测量子效率是潜在剂量降低的基础。数字平板探测板都具有的特性是相对于屏-片X线摄影都有较高的DQE。同等放射剂量下,非晶硒的DQE比非晶硅的低;非晶硅探测板在剂量降低上优于非晶硒探测板。(8)外接装置:是否需要水冷装置或其他装置2、球管:射线质量和寿命;以OPTIMUS65SRO33100为最佳。(1)焦点(2)热容量(3)高速旋转、阳级转速(4)束光器3、高压发生器:(1)功率、频率(2)输出范围(3)KV调节(4)最短曝光时间4、控制台:(1)自动曝光控制、解剖部位摄影:一般都有。(2)工作站屏幕:19in为主流;17in逐渐淘汰。(3)操作系统:个人电脑级Windows系统或专业服务器级UNIX系统;对电脑稍有了解的人都明白,后者比前者有不可比拟的稳定性、高处理能力。(4)硬盘:一般60~80G;有普通IDE硬盘和高速SCSI硬盘之分;后者有最快的响应速度和最长的寿命,尤其是涉及图像处理时更能显示出多通道高速度的优势。(5)曝光到诊断图像显示时间:一般要求≤10s,少数能够达到5s以内;检验工作台计算机系统工作能力的一个很重要的指标。(6)图像质量控制功能:或好或坏一般都有此功能。(7)图像处理软件及升级:商家一般都提供在使用期限内免费升级服务;厂商针对医疗诊断实际需求而独家开发的图像处理软件尤显重要,也是判断DR设备档次高低的重要依据之一。(8)DICOM3.0及功能:一般都有。(9)外储设备:光盘刻录DVD或CD-RW。(10)图像输出:以数字形式输出到相机及PACS系统(11)网络传输速度:100m/ms或1000m/ms;后者有更快的传输速率。5、球管支架及诊断床:要求人性化设计和符合临床需要。(1)球管支架(2)球管旋转(3)自动电磁锁定及角度和距离显示功能(4)诊断床要求(5)滤线栅6、售后服务:(1)免费维修:整机一般一年保修。(2)探测器保修:一般为二年保修。(3)PACS系统连接及连接所需相关软、硬件:一般免费提供。(4)操作维修手册:要求详尽。(5)现场应用和维修培训服务:一般免费提供。(6)开机率:一般要求95%以上。(7)售后服务响应时间和保修期后维修年限:一般要求接维修通知后24小时内到达故障现场;保
本文标题:直接数字化放射摄影系统(DR)的发展及技术现状
链接地址:https://www.777doc.com/doc-2265115 .html