您好,欢迎访问三七文档
金属基复合材料的发展现状及展望摘要:金属基复合材料【1】是以金属或合金为基体,并以纤维、晶须、颗粒等为增强体的复合材料。其特点在力学方面为横向及剪切强度较高,韧性及疲劳等综合力学性能较好,同时还具有导热、导电、耐磨、热膨胀系数小、阻尼性好、不吸湿、不老化和无污染等优点。介绍了金属基复合材料的研究及应用现状。介绍了金属基复合材料的分类、性能特点,并总结了其主要应用。对于大批量生产的复合材料来讲,轧制方法复合具有比其它方法有更多的适用性和经济性。关键词:金属基复合材料;分类;性能;制备工艺;发展趋势;应用1前言随着现代科学技术和现代工业的发展,单一的金属或合金已很难完全满足其对材料综合性能的要求,因而近年来新型复合材料【2】受到世界各国的普遍重视。自20世纪80年代以来,美国每年耗资10亿美元专门用于研究开发新材料,其重点之一就是金属复合材料。目前美国复合材料的研制和生产居世界领先的地位。金属复合材料是利用复合技术使两种或两种以上物理、化学、力学性能不同的金属材料结合成一体制备的。金属复合材料在保持母材金属特性的同时还具有“相补效应”可以弥补各自的不足,经过恰当的组合从而获得优异的综合性能。复合材料的力学性能和功能,可以根据实际需要,通过适当选材和优化设计来获得。复合材料广泛应用于航空、航天、汽车、运输、桥梁、民用建筑、体育设施及国防建设等诸多领域。现代科学技术对现代新型材料的强韧性,导电、导热性,耐高温性,耐磨性等性能都提出了越来越高的要求。与传统的金属材料相比,金属基复合材料具有较高的比强度与比刚度,而与高分子基复合材料相比,它又具有优良的导电性而耐热性,与陶瓷材料相比,它又具有较高的韧性和较高的抗冲击性能。这些优良的性能决定了它从诞生之日起就成了新材料家庭中的重要一员。2金属基复合材料的发展历史金属基复合材料(MMC)【3】是多功能复合材料的一种。它是一类以金属或合金为基体,以金属或非金属线、丝、纤维、晶须或颗粒状组分为增强相的非均质混合物,其共同点是具有连续的金属基体。金属基复合材料有着悠久的历史,在土耳其发现的公元前7000年的铜锥子,在制造过程中经过反复锤打与拓平,非金属夹杂物被拉长,从而产生类似纤维增强的效果。近代金属基复合材料的研究始于1924年Schmit关于铝Π氧化铝粉末烧结的研究工作。在30年代,又出现了沉淀强化理论,并在以后的几十年中得到了很快的发展。到60年代,金属基复合材料已经发展成为复合材料的一个新的分支。到80年代初,日本丰田公司首次将陶瓷纤维增强铝基复合材料用于制造柴油发动机活塞,从此金属基复合材料的研制与开发工作得到了异乎寻常的发展。土耳其的S.Eroglu等人用等离子喷涂技术制得了NiCr2Al/MgO2ZrO2功能梯度涂层。目前,尽管在制造成本和工艺上存在很大的问题,但金属基复合材料已经引起有关部门的高度重视,特别是航空航天部门推进系统使用的材料,其性能已经达到了极限。因此,研制工作温度更高、比刚度和比强度大幅度增加的金属基复合材料,已经成为发展高性能结构材料的一个重要方向。90年代后期,由于电子产品发展迅速,要求同时具有高热传导能力和低膨胀特性的电子元件构造装配材料的量迅速增加,于是低膨胀、高强化与高热传导的金属基体合理匹配的金属基复合材料备受重视;同时也需要强度高,耐电弧冲蚀,导电率高的电接触用复合材料。复合材料已经成为当代材料领域中一个重要发展方向,地位越来越重要。到20世纪90年代初,先进复合材料的世界总产量已经达到300万吨,在许多领域特别是航空航天领域显示了极其重要的地位。西方国家把先进复合材料列为战略材料,列入为数有限的国家重点研究和发展项目,列入不准许输出的新材料。3金属基复合材料的分类和性能金属基复合材料【4】除力学性能优异外,还具有某些特殊性能和良好的综合性能,应用范围广泛。依据基体合金的种类可分为:轻金属基复合材料、高熔点金属基复合材料、金属间化合物基复合材料。按增强相形态的不同可划分为:连续纤维增强金属基复合材料、短纤维增强金属基复合材料、晶须增强金属基复合材料、颗粒增强金属基复合材料、混杂增强金属复合材料。以下从基体、增强体以及复合材料的性能应用等方面,分别予以评述。3.1合金基体复合材料性能铝、镁、钛、铜合金及金属间化合物合金是目前应用广泛、发展迅速的轻金属合金。用其制成的各种高比强度、高比模量的轻型结构件广泛地应用于航天、航空和汽车工业等领域。铝基复合材料具有轻质、高强、高韧性、导热性较好的性能特点,且铝基复合材料适用的制备方法多,易于塑性加工,制造成本低。与铝基复合材料相比,镁基复合材料最大的优点是质量更轻,多用于航天、空间等对构件质量有严格要求的高技术领域。铜的导电性、导热性和塑性在金属中名列前茅,属于廉价金属,但在铜中加入增强体可提高其强度、刚度、耐热性和降低热膨胀系数,所以铜基复合材料有良好的导热性可有效地传热散热,能减少构件受热后产生的温度梯度,主要用于电力工业和半导体工业。铝基复合材料在温度高于300℃后,其强度迅速下降,极限工作温度约350℃,相比之下,钛基复合材料比铝基复合材料有更高的耐热性,但成本明显高于铝基复合材料,因此,钛基复合材料应用领域主要集中于飞行器及发动机的耐热零部件。3.2增强体金属基复合材料金属基复合材料的增强体是一些不同几何形状的金属或非金属材料。目前,其增强相已有很多,重要的有氧化铝纤维、硼纤维、石墨(碳)纤维、SiC纤维晶须;颗粒型的有SiC、碳化硼、图化钛等;丝状的有钨、铍、硼、钢等。金属基复合材料按其增强材料的几何形态可划分为以下几类。3.2.1连续纤维增强金属基复合材料。纤维增强金属基复合材料【5】是利用无机纤维(或晶须)及金属细线等增强金属得到质量轻且强度高的材料,纤维直径从3~150μm(晶须直径小于1μm),纵横比(长度/直径)在102以上。3.2.2短纤维增强金属基复合材料。作为金属基复合材料增强体的短纤可分为天然纤维制品和短切纤维。天然纤维主要是一些植物纤维和菌类纤维索等,长度一般为35~150mm;短切纤维一般是由连续纤维(长纤维)切割而成长度1~50mm,用于金属基复合材料短纤维增强体的材料主要有Saffil-Al2O3、Al2O3-SiO2、SiC等。3.2.3晶须增强金属基复合材料。晶须是指在特定条件下以单晶的形式生长而成的一种高纯度纤维,其原子排列高度有序,几乎不含晶界位错等晶体结构缺陷,有异乎寻常的力学性能。作为金属基复合材料的增强体使用的晶须使用做多、性能较好的是SiC、SiN4晶须,成本最低的是Al2O3·B2O3晶须。3.2.4颗粒增强金属基复合材料。颗粒增强金属基复合材料是利用颗粒自身的强度,其基体起着把颗粒组合在一起的作用,颗粒平焊接材料均直径在1μm以上,强化相的容积比可达90%。常用作金属基复合材料增强体的颗粒主要有:SiC、Al2O3、TiC、TiB2、NiAl、Si3N4等陶瓷颗粒,以及石墨颗粒、甚至金属颗粒。3.2.5混杂增强金属复合材料。对上述四种单一的增强形式进行有机的组合就形成了混杂增强。增强体的混杂组合可分为三种:颗粒-短纤维(或晶须)、连续纤维-颗粒、连续纤维-连续纤维。在短纤维或晶须的预制件中,易出现增强的粘结、团聚现象,颗粒的混入可以解决这一问题。4金属基复合材料制备工艺方法由于金属材料熔点较高,同时不少金属对增强体表面润湿性很差加上金属原子在高温状态下很活泼,易与多种增强体发生反应,所以金属基复合材料【6】的复合工艺比较复杂和困难,这也是金属基复合材料的发展受到制约的主要原因。4.1粉末冶金复合法粉末冶金复合法基本原理与常规的粉末冶金法相同,包括烧结成形法,烧结制坯加塑法加成形法等适合于分散强化型复合材料(颗粒强化或纤维强化型复合材料)的制备与成型。该方法在铝基复台材料的制备方面应用较广,但其主要缺点是基体金属与强化颗粒的组合受限制。4.2铸造凝固成型法铸造凝固成型法是在基体金属处于熔融状态下进行复合。主要方法有搅拌铸造法、液相渗和法和共喷射沉积法等。铸造凝固成型铸造复合材料具有工艺简单化、制品质量好等特点,工业应用较广泛。4.2.1原生铸造复合法原生铸造复合法(也称液相接触反应合成技术LiquidContactReaction:LCR)是将生产强化颗粒的原料加到熔融基体金属中,利用高温下的化学反应强化相,然后通过浇铸成形。4.2.2搅拌铸造法搅拌铸造法也称掺和铸造法,是在熔化金属中加人陶瓷颗粒,经均匀搅拌后浇入铸摸中获得制品或二次加工坯料,此法易于实现能大批量生产,成本较低。该方法在铝基复合材料的制备方面应用较广,但其主要缺点是基体金属与强化颗粒的组合受限制。4.2.3半固态复合铸造法半固态复合铸造法是从半固态铸造法发展而来的。通常金属凝固时,初生晶以枝晶方式长大,固相率达0.2%左右时枝晶就形成连续网络骨架,失去宏观流动性。4.2.4含浸凝固法含浸凝固法是一种将预先制备的含有较高孔隙率的强化相成形体含浸于熔融基体金属之中,让基体金属浸透预成型体后,使其凝固以制备复合材料的方法。有加压含浸和非加压含浸两种方法。含浸法适合于强化相与熔融基体金属之间润湿性很差的复合材料的制备。4.2.5离心铸造法广泛应用于空心件铸造成形的离心铸造法,可以通过两次铸造成型法成形双金属层状复合材料,此方法简单,具有成本低、铸件致密度高等优点,但是界面质量不易控制,难以形成连续长尺寸的复合材料。4.2.6加压凝固铸造法该方法是将金属液浇注铸型后,加压使金属液在压力下凝固。金属从液态到凝固均处于高压下,故能充分浸渗,补缩并防止产生气孔得到致密铸件。铸、锻相结合的方法叉称挤压铸造、液态模锻、锻铸法等。此法最适合复杂的异型MMCs。4.3喷射成形法喷射成形叉称喷射沉积(SprayForming),是用惰性气体将金属雾化成微小的液滴,并使之向一定方向喷射,在喷射途中与另一路由惰性气体送出的增强微细颗粒会合,共同喷射沉积在有水冷衬底的平台上,凝固成复合材料。4.4叠层复合法叠层复合法是先将不同金属板用扩散结合方法复合,然后采用离子溅射或分子束外延方法交替地将不同金属或金属与陶瓷薄层叠合在一起构成金属基复合材料。这种复合材料性能很好,但工艺复杂难以实用化。4.5原位生成复合法原位生成复合法也称反应合成技术,最早出现于1967年前用SHS法合成TiB:/Cu功能梯度材料的研究中。金属基复合材料的反应合成法是指借助化学反应,在一定条件下在基体金属内原位生成一种或几种热力学稳定的增强相的一种复合方法。5金属基复合材料的应用及发展趋势5.1金属基复合材料的应用目前应用的复合材料主要有金属基、无机非金属基和高分子基三大类。但是由于金属基复合材料价格昂贵,主要用于航空航天和军事领域,一般工业领域不多见。而由于铝基复合材料的优良的综合性能,使得铝基复合材料在金属基复合材料中应用最为广泛。5.1.1铝基复合材料的应用硼纤维增强铝基复合材料【7】是实际应用最早的金属基复合材料,美国和前苏联的航天飞机中机身框架及支柱和起落拉杆等都用该材料制成。硼-铝复合材料还用做多层半导体芯片的支座的散热冷却板材料,硼-铝复合材料的导热好,热膨胀系数与半导体芯片非常接近,能大大减少接头处的疲劳。硼-铝复合材料的应用前景宽广,可用作中子屏蔽材料,还可用来制造废核燃料的运输容器和储存容器、可移动防护罩、控制杆、喷气发动机风扇叶片、飞机机翼蒙皮、结构支承件、飞机垂直尾翼、导弹构件、飞机起落部件、自行车架、高尔夫球杆等。碳化硅晶须增强铝基复合材料用于制造导弹平衡翼和制导元件,航天器的结构部件和发动机部件,战术坦克反射镜部件,轻型坦克履带,汽车零件,如活塞、连杆、汽缸、活塞销等,飞机的机身地板和新型战斗机尾翼平衡器。碳化硅增强铝基复合材料可用来制造卫星及航天用结构材料,如卫星支架、结构连接件、管材,各种型材,导弹翼、遥控飞机翼、飞机零部件等。5.1.2钛基复合材料的应用SiC纤维增强钛基复合材料的发展最初是以超高音速宇航器和先进航空发动机为主要目标。因为用它制造的波纹芯体呈蜂窝结构,在高温下具有很高的承载能力和刚度及低的密
本文标题:材料制备技术
链接地址:https://www.777doc.com/doc-2283612 .html