您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 其它行业文档 > 湖北省黄冈市2013年中考数学试题(解析版)
年湖北省黄冈市中考数学试卷一、选择题(下列各题A、B、C、D四个选项中,有且仅有一个十正确的,每小题3分,共24分)1.(3分)(2013•黄冈)﹣(﹣3)2=()A.﹣3B.3C.﹣9D.9考点:有理数的乘方.分析:根据有理数的乘方的定义解答.解答:解:﹣(﹣3)2=﹣9.故选C.点评:本题考查了有理数的乘方的定义,是基础题,熟记概念是解题的关键.2.(3分)(2013•黄冈)随着人们生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是()A.B.C.D.考点:中心对称图形.分析:根据中心对称图形的定义,结合选项所给图形进行判断即可.解答:解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选A.点评:本题考查了中心对称图形的知识,判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.3.(3分)(2013•黄冈)如图,AB∥CD∥EF,AC∥DF,若∠BAC=120°,则∠CDF=().60°B.120°C.150°D.180°考点:平行线的性质.专题:计算题.分析:根据两直线平行,同旁内角互补由AB∥CD得到∠BAC+∠ACD=180°,可计算出∠ACD=60°,然后由AC∥DF,根据平行线的性质得到∠ACD=∠CDF=60°.解答:解:∵AB∥CD,∴∠BAC+∠ACD=180°,∵∠BAC=120°,∴∠ACD=180°﹣120°=60°,∵AC∥DF,∴∠ACD=∠CDF,∴∠CDF=60°.故选A.点评:本题考查了平行线的性质:两直线平行,内错角相等;两直线平行,同旁内角互补.4.(3分)(2013•黄冈)下列计算正确的是()A.x4•x4=x16B.(a3)2•a4=a9C.(ab2)3÷(﹣ab)2=﹣ab4D.(a6)2÷(a4)3=1考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的乘除法则及幂的乘方法则,结合各选项进行判断即可.解答:解:A、x4×x4=x8,原式计算错误,故本选项错误;B、(a3)2•a4=a10,原式计算错误,故本选项错误;C、(ab2)3÷(﹣ab)2=ab4,原式计算错误,故本选项错误;D、(a6)2÷(a4)3=1,计算正确,故本选项正确;故选D.点评:本题考查了同底数幂的乘除、幂的乘方与积的乘方的知识,解答本题的关键是掌握各部分的运算法则.5.(3分)(2013•黄冈)已知一个正棱柱的俯视图和左视图如图,则其主视图为()A.B.C.D.考点:由三视图判断几何体;简单组合体的三视图.分析:首先根据俯视图和左视图判断该几何体,然后确定其主视图即可;解答:解:根据此正棱柱的俯视图和左视图得到该几何体是正五棱柱,其主视图应该是矩形,而且有看到两条棱,背面的棱用虚线表示,故选D.点评:本题考查了几何体的三种视图,掌握定义是关键.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.6.(3分)(2013•黄冈)已知一元二次方程x2﹣6x+C=0有一个根为2,则另一根为()A.2B.3C.4D.8考点:根与系数的关系.分析:利用根与系数的关系来求方程的另一根.解答:解:设方程的另一根为α,则α+2=6,解得α=4.故选C.点评:本题考查了根与系数的关系.若二次项系数为1,常用以下关系:x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q,反过来可得p=﹣(x1+x2),q=x1x2,前者是已知系数确定根的相关问题,后者是已知两根确定方程中未知系数..(3分)(2013•黄冈)已知一个圆柱的侧面展开图为如图所示的矩形,则其底面圆的面积为()A.πB.4πC.π或4πD.2π或4π考点:几何体的展开图.分析:分底面周长为4π和2π两种情况讨论,先求得底面半径,再根据圆的面积公式即可求解.解答:解:①底面周长为4π时,半径为4π÷π÷2=2,底面圆的面积为π×22=4π;②底面周长为2π时,半径为2π÷π÷2=1,底面圆的面积为π×12=π.故选C.点评:考查了圆柱的侧面展开图,注意分长为底面周长和宽为底面周长两种情况讨论求解.8.(3分)(2013•黄冈)一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离y(千米)与快车行驶时间(小时)之间的函数图象是()A.B.C.D.考点:函数的图象.分析:分三段讨论,①两车从开始到相遇,这段时间两车距迅速减小,②相遇后向相反方向行驶至特快到达甲地,这段时间两车距迅速增加,③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大,结合实际选符合的图象即可.解答:解:①两车从开始到相遇,这段时间两车距迅速减小;②相遇后向相反方向行驶至特快到达甲地,这段时间两车距迅速增加;③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大;结合图象可得C选项符合题意.故选C.点评:本题考查了函数的图象,解答本题关键是分段讨论,要结合实际解答,明白每条直线所代表的实际含义及拐点的含义.二、填空题(每小题3分,满分21分)9.(3分)(2013•黄冈)计算:=﹣(或).考点:分式的加减法.专题:计算题.分析:分母相同,直接将分子相减再约分即可.解答:解:原式===﹣,(或).点评:本题考查了分式的加减,分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可.10.(3分)(2013•黄冈)分解因式:ab2﹣4a=a(b﹣2)(b+2).考点:提公因式法与公式法的综合运用.分析:先提取公因式a,再对余下的多项式利用平方差公式继续分解.解答:解:ab2﹣4a=a(b2﹣4)=a(b﹣2)(b+2).故答案为:a(b﹣2)(b+2).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止..(3分)(2013•黄冈)已知△ABC为等边三角形,BD为中线,延长BC至E,使CE=CD=1,连接DE,则DE=.考点:等边三角形的性质;等腰三角形的判定与性质.分析:根据等腰三角形和三角形外角性质求出BD=DE,求出BC,在Rt△△BDC中,由勾股定理求出BD即可.解答:解:∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,AB=BC,∵BD为中线,∴∠DBC=∠ABC=30°,∵CD=CE,∴∠E=∠CDE,∵∠E+∠CDE=∠ACB,∴∠E=30°=∠DBC,∴BD=DE,∵BD是AC中线,CD=1,∴AD=DC=1,∵△ABC是等边三角形,∴BC=AC=1+1=2,BD⊥AC,在Rt△△BDC中,由勾股定理得:BD==,即DE=BD=,故答案为:.点评:本题考查了等边三角形性质,勾股定理,等腰三角形性质,三角形的外角性质等知识点的应用,关键是求出DE=BD和求出BD的长..(3分)(2013•黄冈)已知反比例函数在第一象限的图象如图所示,点A在其图象上,点B为x轴正半轴上一点,连接AO、AB,且AO=AB,则S△AOB=6.考点:反比例函数系数k的几何意义;等腰三角形的性质.分析:根据等腰三角形的性质得出CO=BC,再利用反比例函数系数k的几何意义得出S△AOB即可.解答:解:过点A作AC⊥OB于点C,∵AO=AB,∴CO=BC,∵点A在其图象上,∴AC×CO=3,∴AC×BC=3,∴S△AOB=6.故答案为:6.点评:此题主要考查了等腰三角形的性质以及反比例函数系数k的几何意义,正确分割△AOB是解题关键.13.(3分)(2013•黄冈)如图,M是CD的中点,EM⊥CD,若CD=4,EM=8,则所在圆的半径为.考点:垂径定理;勾股定理.专题:探究型.分析:首先连接OC,由M是CD的中点,EM⊥CD,可得EM过⊙O的圆心点O,然后设半径为x,由勾股定理即可求得:(8﹣x)2+22=x2,解此方程即可求得答案.解答:解:连接OC,∵M是CD的中点,EM⊥CD,∴EM过⊙O的圆心点O,设半径为x,∵CD=4,EM=8,∴CM=CD=2,OM=8﹣OE=8﹣x,在Rt△OEM中,OM2+CM2=OC2,即(8﹣x)2+22=x2,解得:x=.∴所在圆的半径为:.故答案为:.点评:此题考查了垂径定理以及勾股定理.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用.14.(3分)(2013•黄冈)钓鱼岛自古就是中国领土,中国政府已对钓鱼岛开展常态化巡逻.某天,为按计划准点到达指定海域,某巡逻艇凌晨1:00出发,匀速行驶一段时间后,因中途出现故障耽搁了一段时间,故障排除后,该艇加快速度仍匀速前进,结果恰好准点到达.如图是该艇行驶的路程y(海里)与所用时间t(小时)的函数图象,则该巡逻艇原计划准点到达的时刻是7:00.考点:一次函数的应用.分析:根据函数图象和题意可以求出开始的速度为80海里/时,故障排除后的速度是100海里/时,设计划行驶的路程是a海里,就可以由时间之间的关系建立方程求出路程,再由路程除以速度就可以求出计划到达时间.解答:解:由图象及题意,得故障前的速度为:80÷1=80海里/时,故障后的速度为:(180﹣80)÷1=100海里/时.设航行额全程由a海里,由题意,得,解得:a=480,则原计划行驶的时间为:480÷80=6小时,故计划准点到达的时刻为:7:00.故答案为:7:00.点评:本题考查了运用函数图象的意义解答行程问题的运用,行程问题的数量关系路程=速度×时间的运用,解答时先根据图象求出速度是关键,再建立方程求出距离是难点.15.(3分)(2013•黄冈)如图,矩形ABCD中,AB=4,BC=3,边CD在直线l上,将矩形ABCD沿直线l作无滑动翻滚,当点A第一次翻滚到点A1位置时,则点A经过的路线长为6π.考点:弧长的计算;矩形的性质;旋转的性质.专题:规律型.分析:如图根据旋转的性质知,点A经过的路线长是三段:①以90°为圆心角,AD长为半径的扇形的弧长;②以90°为圆心角,AB长为半径的扇形的弧长;③90°为圆心角,矩形ABCD对角线长为半径的扇形的弧长.解答:解:∵四边形ABCD是矩形,AB=4,BC=3,∴BC=AD=3,∠ADC=90°,对角线AC(BD)=5.∵根据旋转的性质知,∠ADA′=90°,AD=A′D=BC=3,∴点A第一次翻滚到点A′位置时,则点A′经过的路线长为:=.同理,点A′第一次翻滚到点A″位置时,则点A′经过的路线长为:=2π.点″第一次翻滚到点A1位置时,则点A″经过的路线长为:=.则当点A第一次翻滚到点A1位置时,则点A经过的路线长为:+2π+=6π.故答案是:6π.点评:本题考查了弧长的计算、矩形的性质以及旋转的性质.根据题意画出点A运动轨迹,是突破解题难点的关键.三、解答题(本大题共10个小题,共86分.每小题给出必要的演算过程或推理步骤.)16.(6分)(2013•黄冈)解方程组:.考点:解二元一次方程组.专题:计算题.分析:把方程组整理成一般形式,然后利用代入消元法其求即可.解答:解:方程组可化为,由②得,x=5y﹣3③,③代入①得,5(5y﹣3)﹣11y=﹣1,解得y=1,把
本文标题:湖北省黄冈市2013年中考数学试题(解析版)
链接地址:https://www.777doc.com/doc-2291502 .html