您好,欢迎访问三七文档
染料敏化太阳能电池报告报告题目染料敏化太阳能电池学生姓名权媛学号20131306007学院物理与光电工程学院专业光信息13(1)班指导教师徐林华二O一六年五月2摘要:随着世界经济的不断发展,对能源的需求越来越多,不可再生能源面临着枯竭。新能源开发成为各国政府首要解决的问题。在各种可再生能源(风能、水能、太阳能等)中,太阳能由于具有清洁、使用安全、取之不尽、利用成本低且不受地理条件限制等优点,而备受青睐。当前太阳能的利用主要以光热转换、光电转换以及光化学能转换为主。其中光电转换也就是太阳能电池是太阳能利用研究的热点之一。太阳能电池是根据光生伏特效应制成的光电转换器件。到目前为止,基于半导体硅及无机半导体化合物的太阳能电池光电转换效率是最高的。但长期以来,复杂的制作工艺和昂贵的成本限制了它们的发展和应用。所以近年来各国科学家正展开对新型太阳能电池的研究。相对于传统太阳能电池,染料敏化太阳能电池制备工艺相对简单,成本低廉,原材料广,并且无污染,因此,染料敏化太阳能电池是现在研究新型太阳能电池的重点研究方向之一。关键字:太阳能DSSC天然染料新能源3目录1染料敏化太阳能电池的概述……………………………………………41.1染料敏化太阳能电池的结构……………………………………………….41.2染料敏化太阳能电池工作原理……………………………………………52染料敏化太阳能电池的性能参数………………………………………72.1曲线……………………………………………………………………………………...72.2开路电压………………………………………………………………………………..72.3短路电流……………………………………………………………………………….72.4填充因子………………………………………………………………………………..83染料敏化太阳能电池的选材………………………………………………84DSSC制作工艺……………………………………………………………………84.1纳米晶TiO2多孔薄膜电极的制备方法……………………………….84.2氮掺杂TiO2的制备方法……………………………………………………….95染料敏化电池的应用………………………………………………………….96染料敏化太阳能电池的发展……………………………………………..107结语……………………………………………………………………………………11参考文献………………………………………………………………………………1241染料敏化太阳能电池的概述1.1染料敏化太阳能电池的结构染料敏化太阳能电池主要由表面吸附了染料敏化剂的半导体电极、电解质、Pt对电极组成,其结构如图1所示:图1.染料敏化太阳能电池结构当有入射光时,染料敏化剂首先被激发,处于激发态的染料敏化剂将电子注入半导体的导带。氧化态的染料敏化剂被中继电解质所还原,中继分子扩散至对电极充电。这样,开路时两极产生光电势,经负载闭路则在外电路产生相应的光电流(如图2)图2染料敏化太阳能电池工作原理图51.2染料敏化太阳能电池工作原理太阳光照在半导体pn结上,当能量不低于半导体的禁带宽度时,电子受激跃迁到激发态,形成电子空穴对,进而在pn结内形成内建电场;在该电场的作用下光生空穴由n区流向p区,光生电子由p区流向n区,在外电路作用下形成电流。这就是传统的太阳能电池的工作原理。而为了避免电子-空穴对的复合,半导体缺陷或者半导体掺杂浓度需要非常严格的控制,这使得这项技术的难度大大增加。不仅如此,传统的太阳能电池只有不低于半导体材料的禁带宽度的能量才可以被利用,而一些半导体的禁带宽度较大,需要吸收紫外区的能量方能形成电子-空穴对,这就使得太阳能的利用率不高。与传统的太阳能电池不同,染料敏化太阳能电池的原理类似于自然界植物的光合作用,它对光的吸收是通过染料来实现的,它能将低于半导体材料的禁带宽度的能量也利用起来:当能量低于半导体材料的禁带宽度且大于染料分子特征吸收波长的入射光照射到电极上时,吸附在电极表面的染料分子中的电子受激跃迁至激发态,然后染料分子中激发态的电子注入到半导体材料的导带中,此时染料分子由于失去电子转变为氧化态。注入半导体倒带的电子被收集到导电基片,并通过外电路流向对电极,形成电流。处于氧化态的染料分子则通过电解质溶液中的给体电子,自身恢复回还原态,染料分子得以再生,这使得染料分子能够循环利用;同时,被氧化的电子给体扩散至对电极,在电极表面得到电子而被还原,从而完成一个光电化学反应循环。可见,染料敏化太阳能电池主要是依靠染料分子中电子跃迁以及电解质的氧化还原过程来实现电荷的分离和传输,从而达到供电的作用。总的说来,在染料敏化太阳能电池中,光能被直接转换成了电能,电池内部并没有发生净的化学变化。一般认为,染料敏化太阳能电池的开路电压取决于纳米半导体的费米能级和电解质氧化还原电对能斯特能级之差。传统的硅光伏电池依靠的是物理光电效应,而染料敏化太阳能电池则是通过光化学过程来实现光电转换,使太阳电池的光电转换材料不再局限于制备过程复杂、价格昂贵的高纯无机半导体材料。与传统PN结太阳电池相比,DSSC的最大特点是其光吸收和电荷分离传输分别由不同的物质完成,光吸收是靠吸附在纳米半导体表面的染料来完成,而半导体仅起电荷分离和传输载体的作用。DSSC的最大优势是电荷传输是靠多数载流子来实现电荷传导,不存在传统PN结太阳电池中少数载流子和电荷传输材料表面复合等问题,因而其制备过程简单,对环境要求不高。通过超快光谱实验可得出染料敏化太阳能电池各个反应步骤速率常数的数量级:6①染料(S)受光激发由基态跃迁到激发态(S*):S+hυ→S*②激发态染料分子将电子注入到半导体的导带中:S*→S++e-(CB),kinj=1010~1012s-1③I-离子还原氧化态染料可以使染料再生:3I-+2S+→I3-+2S,k3=108s-1④导带中的电子与氧化态染料之间的复合:S++e-(CB)→S,kb=106s-1⑤导带中的电子在纳米晶网络中传输到后接触面(backcontact,BC)后而流入到外电路中:e-(CB)→e-(BC),k5=103~100s-1⑥纳米晶膜中传输的电子与进入TiO2膜的孔中的I3-离子复合:I3-+2e-(CB)→3I-,J0=10-11~10-9Acm-2⑦I3-离子扩散到对电极上得到电子使I-离子再生:I3-+2e-(CE)→3I-,J0=10-2~10-1Acm-2激发态的寿命越长,越有利于电子的注入,而激发态的寿命越短,激发态分子有可能来不及电子注入到半导体的导带中就已经通过非辐射衰减而返回到基态。②、④两步为决定电子注入效率的关键步骤。电子注入速率常数(kinj)与逆反应速率常数(kb)之比越大(一般大于三个数量级),电子复合的机会越小,电子注入的效率就越高。I-离子还原氧化态染料可以使染料再生,从而使染料不断地将电子注入到二氧化钛的导带中。步骤⑥是造成电流损失的一个主要原因,因此电子在纳米晶网络中的传输速度(k5)越大,电子与I3-离子复合的交换电流密度(J0)越小,电流损失就越小。步骤③生成的I3-离子扩散到对电极上得到电子变成离子I-(步骤⑦),从而使I-离子再生并完成电流循环。DSC的结构组成:主要由纳米多孔半导体薄膜、染料敏化剂、氧化还原电解质、对电极和导电基底等几部分组成。纳米多孔半导体薄膜通常为金属氧化物(TiO2、SnO2、ZnO等),聚集在有透明导电膜的玻璃板上作为DSC的负极。对电极作为还原催化剂,通常在带有透明导电膜的玻璃上镀上铂。敏化染料吸附在纳米多孔二氧化钛膜面上。正负极间填充的是含有氧化还原电对的电解质,最常用的是I3/I-。DSC工作原理如下图所示:(1)染料分子受太阳光照射后由基态跃迁至激发态;⑵处于激发态的染料分子将电子注入到半导体的导带中;⑶电子扩散至导电基底,后流入外电路中;7⑷处于氧化态的染料被还原态的电解质还原再生;⑸氧化态的电解质在对电极接受电子后被还原,从而完成一个循环;⑹和⑺分别为注入到TiO2导带中的电子和氧化态染料间的复合及导带上的电子和氧化态的电解质间的复合研究结果表明:只有非常靠近TiO2表面的敏化剂分子才能顺利把电子注入到TiO2导带中去,多层敏化剂的吸附反而会阻碍电子运输;染料色激发态寿命很短,必须与电极紧密结合,最好能化学吸附到电极上;染料分子的光谱响应范围和量子产率是影响DSC的光子俘获量的关键因素。到目前为止,电子在染料敏化二氧化钛纳米晶电极中的传输机理还不十分清楚,有Weller等的隧穿机理、Lindquist等的扩散模型等,有待于进一步研究2染料敏化太阳能电池的性能参数2.1I-V曲线太阳能电池的输出特性我们可以用I-V曲线(如图3)来表示。由I-V曲线可以得到描述太阳能电池的四个重要的输出参数:开路电压、短路电流、填充因子和光电转换效率。图32.2开路电压在一定的温度和光辐照度条件下,太阳能电池在开路(空载)情况下的端电压,也就是伏安特性曲线与横坐标的交点所对应的电压,通常用OCU来表示。2.3短路电流在一定的温度和光辐照度条件下,太阳能电池在端电压为零时的输出电流,也就是伏安特性曲线与纵坐标的交点所对应的电流,通常用scI来表示。太阳能电池的短路电流scI与太阳能电池的面积大小有关,面积越大,scI越大。82.4填充因子填充因子是表征太阳能电池性能优劣的一个重要参数,定义为太阳能电池的最大功率与开路电压和短路电流之比,通常用FF表示。太阳能电池的串联电阻越小,旁路电阻越大,则填充因子越大,该电池的伏安特性曲线所包围的面积也越大,表示伏安特性曲线接近于正方形,这就意味着该太阳能电池的最大输出功率越接近于所能达到的极限输出功率,因而光电性能越好。3染料敏化太阳能电池的选材TiO2材料具备稳定的性质,且廉价易得,是理想的工业材料。由于它的禁带宽度是3.2eV,超过了可见光的能量范围(1.71eV~3.1eV),所以需要用光敏材料对其进行修饰。其中的染料敏化剂指多由钌(Ru)和锇(Os)等过渡金属与多联吡啶形成的配合物;实验证明,只有吸附在TiO2表面的单层染料分子才有有效的敏化作用,所以人们往往采用多孔纳米TiO2薄膜,利用其大的比表面积吸附更多染料分子,利用太阳光在粗糙表面内的多次反射从而被染料分子反复吸收提高电池效率;电解质随染料的不同而有不同的选择,总的来说,以含I-/I3-离子对的固态或液态电解质为主。由于电解质状态的不同,染料敏化太阳能电池分为液相电解质的湿化学太阳能电池和固相电解质的固态太阳能电池。4DSSC制作工艺染料敏化太阳能电池的制作工艺流程如下图所示:4.1纳米晶TiO2多孔薄膜电极的制备方法目前制备纳晶TiO2多孔薄膜电极的方法主要有两种:(1)采用商品化的TiO2纳米颗粒为原料,加入一定的溶剂制成TiO2胶体,通过刮涂、丝网印刷等技术制备TiO2薄膜电极:(2)以钛盐作原料,采用溶胶一凝胶水热法制备TiO2胶体,之后通过刮涂、9丝网印刷等技术制备TiO2薄膜电极4.2氮掺杂TiO2的制备方法气氛下灼烧法:将TiO2或其前驱体在空气或含氮气氛(NH3,N2或是NH3,与Ar气的混合气体)中锻烧,气体受热分解出高活性的N离子渗入TiO2表面,取代TiO2分子中少量的氧原子,生成TiO2-xNx型化合物,得到掺氮产品。这种制备工艺是2001年Asahi提出的,目前较为常用。水解沉淀法:先将氨水滴加到Ti(SO4)2水溶液中制得水解沉淀产物,再将洗净的沉淀干燥后,在400℃煅烧1h,制备出氮掺杂二氧化钛。溶胶-凝胶法:将钛酸盐或钛合物与氨水等含氮物质反应制备出溶胶-凝胶,再干燥灼烧的方法制备出N掺杂TiO2。还有机械化学法,激光脉冲法等。5染料敏化电池的应用全球染料敏化太阳能电池(DSSC)的产业先驱者--G24Innovations(G24i)总部位于美国加州。全球首批商用DSSC由G24i公司研发并上市,其组件可替代传统的硅太阳能电池,且成本更低,更轻便耐用,在地形和光线条件受限的地方均能适用G24i公司采用滚
本文标题:染料敏化材料
链接地址:https://www.777doc.com/doc-2291537 .html