您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 信息化管理 > 供应链需求预测--rickyblcu
DemandForecastinginaSupplyChain7-12大綱預測在供應鏈的角色預測的特性主要企業預測項目預測的方法與組成時間序列預測預測誤差的衡量指標執行預測的建議CPFR3預測在供應鏈的角色ThebasisforallstrategicandplanningdecisionsinasupplychainExamples:Production:scheduling,inventory,aggregateplanningMarketing:salesforceallocation,promotions,newproductionintroductionFinance:plant/equipmentinvestment,budgetaryplanningPersonnel:workforceplanning,hiring,layoffsAllofthesedecisionsareinterrelated4預測的特性Forecastsarealwayswrong.Shouldincludeexpectedvalueandmeasureoferror.Long-termforecastsarelessaccuratethanshort-termforecasts(forecasthorizonisimportant)Aggregateforecastsaremoreaccuratethandisaggregateforecasts5主要企業預測項目市場需求量母體數預測單位需求量預測驅動變數預測市場佔有率預測企業銷售量預測單價預測生命週期預測6預測的方法主觀法(subjectivemethods)預測人員依個人主觀的判斷進行預測常應用在缺乏歷史資料時透過專家進行主觀預測草根法GrassrootsBottomup市調法MarketresearchLong-rangeNewproductsales歷史類推法Historicalanalogy類似的產品經驗類推DelphiMethod以問卷方式蒐集專家意見以進行預測經由問卷溝通,專家間無直接互動以避免主控性以統計量收斂為停止指標7預測的方法客觀法(objectivemethods)以歷史資料為基礎進行預測TimeSeries(外插法)假設過去之需求資料是未來需求良好指標下,使用歷史資料進行預測,適合當需求環境穩定、無劇烈變動時進行Causal(因果關係法)假設需求與環境中某些因素是高度相關,藉由發現需求與環境因素的相關性去估計未來的需求TransferFunctionModel(轉換函數模式)結合TimeSeries與Causal兩者,經由解釋變數與應變數之歷史資料產生轉換函數,再將解釋變數之預測值代入轉換函數產生應變數之預測值ARIMAT、SARIMAT8需求資料的組成Observeddemand(O)=Systematiccomponent(S)+Randomcomponent(R)Level(currentdeseasonalizeddemand)Trend(growthordeclineindemand)Seasonality(predictableseasonalfluctuation)•Systematiccomponent:Expectedvalueofdemand•Randomcomponent:Thepartoftheforecastthatdeviatesfromthesystematiccomponent•Forecasterror:differencebetweenforecastandactualdemand9需求資料組成的關係類型相乘系統部分=水準×趨勢×季節性因素相加系統部分=水準+趨勢+季節性因素混合系統部分=(水準+趨勢)×季節性因素10時間序列預測QuarterDemandDtII,20038000III,200313000IV,200323000I,200434000II,200410000III,200418000IV,200423000I,200538000II,200512000III,200513000IV,200532000I,200641000Forecastdemandforthenextfourquarters.11時間序列預測010,00020,00030,00040,00050,00003,203,303,404,104,204,304,405,105,205,305,406,112預測的方法StaticAdaptiveMovingaverageSimpleexponentialsmoothingHolt’smodel(withtrend)Winter’smodel(withtrendandseasonality)13預測的流程UnderstandtheobjectivesofforecastingIntegratedemandplanningandforecastingIdentifymajorfactorsthatinfluencethedemandforecastUnderstandandidentifycustomersegmentsDeterminetheappropriateforecastingtechniqueEstablishperformanceanderrormeasuresfortheforecast14時間序列預測GoalistopredictsystematiccomponentofdemandMultiplicative:(level)(trend)(seasonalfactor)Additive:level+trend+seasonalfactorMixed:(level+trend)(seasonalfactor)StaticmethodsAdaptiveforecasting15靜態法Assumeamixedmodel:Systematiccomponent=(level+trend)(seasonalfactor)Ft+l=[L+(t+l)T]St+l=forecastinperiodtfordemandinperiodt+lL=estimateoflevelforperiod0T=estimateoftrendSt=estimateofseasonalfactorforperiodtDt=actualdemandinperiodtFt=forecastofdemandinperiodt16靜態法EstimatinglevelandtrendEstimatingseasonalfactors17範例資料分析產品之需求有季節性的現象每年度之第二季為全年度需求最低之時需求皆是從每年度之第二季遞增至下年度之第一季此需求變化呈現週期現象,每個週期為一年三個週期的需求水準有逐漸上升的趨勢18LevelandTrend因子的估計Beforeestimatinglevelandtrend,demanddatamustbedeseasonalizedDeseasonalizeddemand=demandthatwouldhavebeenobservedintheabsenceofseasonalfluctuationsPeriodicity(p)thenumberofperiodsafterwhichtheseasonalcyclerepeatsitselffordemandatTahoeSalt(Table7.1,Figure7.1)p=419去季節因子的需求資料[Dt-(p/2)+Dt+(p/2)+S2Di]/2pforpevenDt=(sumisfromi=t+1-(p/2)tot+1+(p/2))SDi/pforpodd(sumisfromi=t-(p/2)tot+(p/2)),p/2truncatedtolowerinteger20去季節因子的需求資料Fortheexample,p=4isevenFort=3:D3={D1+D5+Sum(i=2to4)[2Di]}/8={8000+10000+[(2)(13000)+(2)(23000)+(2)(34000)]}/8=19750D4={D2+D6+Sum(i=3to5)[2Di]}/8={13000+18000+[(2)(23000)+(2)(34000)+(2)(10000)]/8=2062521去季節因子的需求資料ThenincludetrendDt=L+tTwhereDt=deseasonalizeddemandinperiodtL=level(deseasonalizeddemandatperiod0)T=trend(rateofgrowthofdeseasonalizeddemand)Trendisdeterminedbylinearregressionusingdeseasonalizeddemandasthedependentvariableandperiodastheindependentvariable(canbedoneinExcel)Intheexample,L=18,439andT=52422需求的時間序列(Figure7.3)01000020000300004000050000123456789101112PeriodDemandDtDt-bar23估計季節因子UsethepreviousequationtocalculatedeseasonalizeddemandforeachperiodSt=Dt/Dt=seasonalfactorforperiodtIntheexample,D2=18439+(524)(2)=19487D2=13000S2=13000/19487=0.67Theseasonalfactorsfortheotherperiodsarecalculatedinthesamemanner24估計季節因子(Fig.7.4)tDtDt-barS-bar18000189630.42=8000/18963213000194870.67=13000/19487323000200111.15=23000/20011434000205351.66=34000/20535510000210590.47=10000/21059618000215830.83=18000/21583723000221071.04=23000/22107838000226311.68=38000/22631912000231550.52=12000/231551013000236790.55=13000/236791132000242031.32=32000/242031241000247271.66=41000/2472725估計季節因子Theoverallseasonalfactorfora“season”isthenobtainedbyaveragingallofthefactorsfora“season”Iftherearerseasonalcycles,forallperiodsoftheformpt+i,1ip,theseasonalfactorforseasoniisSi=[Sum(j=0tor-1)Sjp+i]/rIntheexample,thereare3seasonalcyclesinthedataandp=4,soS1=(0.42+0.47+0.52)/3=0.47S2=(0.67+0.83+0.55)/3=0.68S3=(1.15+1.04+1.32)/3=1.17S4=(1.66+1.68+1.66)/3=1.6726預測未來需求Usingtheoriginalequation,wecanforecastthenextfourp
本文标题:供应链需求预测--rickyblcu
链接地址:https://www.777doc.com/doc-22950 .html