您好,欢迎访问三七文档
当前位置:首页 > 金融/证券 > 投融资/租赁 > 浅谈“哥德巴赫猜想”证明方法
1浅谈“哥德巴赫猜想”证明方法务川自治县实验学校王若仲贵州564300摘要:对于“哥德巴赫猜想”,我们来探讨一种证明方法,要证明任一不小于6的偶数均存在有“奇素数+奇素数”的情形,如果我们把“奇素数+奇素数”这样的情形若能转换到利用奇合数的情形来加以分析,也就是任意给定一个比较大的偶数2m,通过顺筛和逆筛的办法,顺筛就是筛除掉集合{1,3,5,7,9,…,(2m-1)}中的全体奇合数;逆筛就是在集合{1,3,5,7,9,…,(2m-1)}中再筛除掉偶数2m分别减去集合{1,3,5,7,9,…,(2m-1)}中的每一个奇合数而得到的全体奇数;以及筛除掉1和(2m-1)。通过这样筛除后,如果集合中还剩下有奇数,那么剩下的奇数必为奇素数,并且必定只满足“奇素数+奇素数=2m”的情形。关键词:哥德巴赫猜想;奇素数;奇合数;顺筛;逆筛。德国数学家哥德巴赫在1742年提出“哥德巴赫猜想”,即任何一不小于6的偶数均可表为两个奇素数之和。历史上研究“哥德巴赫猜想”的方法及进展。(一)比较有名的方法大致有下面四种:(1)筛法,(2)圆法,(3)密率法,(4)三角求和法。其中:筛法是求不超过自然数N(N>1)的所有素数的一种方法,2m=a+b,a=p1p2p3…pi,b=q1q2q3…qj,筛法的基本出发点,即加权筛法;圆法是三角和(指数和)估计方法;密率法(概率法)是函数估值法。(二)研究的进展途径一:殆素数,即2m=a1·a2·a3·…·ai+b1·b2·b3·…·bj。殆素数就是素因子个数不多的正整数。现设N是偶数,虽然现在不能证明N是两个素数之和,但是可以证明它能够写成两个殆素数的和,即N=A+B,其中A和B的素因子个数都不太多,譬如说素因子个数不超过10。现在用“a+b”来表示如下命题:每个大偶数N都可表为A+B,其中A和B的素因子个数分别不超过a和b。显然,哥德巴赫猜想就可以写成“1+1”。在这一方向上的进展都是用所谓的筛法得到的。“a+b”问题的推进21920年,挪威的布朗证明了“9+9”。1924年,德国的拉特马赫证明了“7+7”。1932年,英国的埃斯特曼证明了“6+6”。1937年,意大利的蕾西先后证明了“5+7”,“4+9”,“3+15”和“2+366”。1938年,苏联的布赫夕太勃证明了“5+5”。1940年,苏联的布赫夕太勃证明了“4+4”。1956年,中国的王元证明了“3+4”。稍后证明了“3+3”和“2+3”。1948年,匈牙利的瑞尼证明了“1+c”,其中c是一很大的自然数。1962年,中国的潘承洞和苏联的巴尔巴恩证明了“1+5”,中国的王元证明了“1+4”。1965年,苏联的布赫夕太勃和小维诺格拉多夫,及意大利的朋比利证明了“1+3”。1966年,中国的陈景润证明了“1+2”。途径二:例外集合,即寻找使得哥德巴赫猜想不成立的那些偶数。在数轴上取定大整数x,再从x往前看,寻找使得哥德巴赫猜想不成立的那些偶数,即例外偶数。x之前所有例外偶数的个数记为E(x)。我们希望,无论x多大,x之前只有一个例外偶数,那就是2,即只有2使得猜想是错的。这样一来,哥德巴赫猜想就等价于E(x)永远等于1。当然,直到现在还不能证明E(x)=1;但是能够证明E(x)远比x小。在x前面的偶数个数大概是x/2;如果当x趋于无穷大时,E(x)与x的比值趋于零,那就说明这些例外偶数密度是零,即哥德巴赫猜想对于几乎所有的偶数成立。3这就是例外集合的思路。维诺格拉多夫的三素数定理发表于1937年。第二年,在例外集合这一途径上,就同时出现了四个证明,其中包括华罗庚先生的著名定理。途径三:小变量的三素数定理,即已知奇数N可以表成三个素数之和,假如又能证明这三个素数中有一个非常小,譬如说第一个素数可以总取3,那么我们也就证明了偶数的哥德巴赫猜想。如果偶数的哥德巴赫猜想正确,那么奇数的猜想也正确。我们可以把这个问题反过来思考。已知奇数N可以表成三个素数之和,假如又能证明这三个素数中有一个非常小,譬如说第一个素数可以总取3,那么我们也就证明了偶数的哥德巴赫猜想。这个思想就促使潘承洞先生在1959年,即他25岁时,研究有一个小素变数的三素数定理。这个小素变数不超过N的θ次方。我们的目标是要证明θ可以取0,即这个小素变数有界,从而推出偶数的哥德巴赫猜想。潘承洞先生首先证明θ可取1/4。后来的很长一段时间内,这方面的工作一直没有进展,直到1995年展涛教授把潘老师的定理推进到7/120。这个数已经比较小了,但是仍然大于0。途径四:几乎哥德巴赫问题,即2m=p+q+2k。p和q均为奇素数。1953年,林尼克发表了一篇长达70页的论文。在文中,他率先研究了几乎哥德巴赫问题,证明了,存在一个固定的非负整数k,使得任何大偶数都能写成两个素数与k个2的方幂之和。这个定理,看起来好像丑化了哥德巴赫猜想,实际上它是非常深刻的。我们注意,能写成k个2的方幂之和的整数构成一个非常稀疏的集合;事实上,对任意取定的x,x前面这种整数的个数不会超过4logx的k次方。因此,林尼克定理指出,虽然我们还不能证明哥德巴赫猜想,但是我们能在整数集合中找到一个非常稀疏的子集,每次从这个稀疏子集里面拿一个元素贴到这两个素数的表达式中去,这个表达式就成立。这里的k用来衡量几乎哥德巴赫问题向哥德巴赫猜想逼近的程度,数值较小的k表示更好的逼近度。显然,如果k等于0,几乎哥德巴赫问题中2的方幂就不再出现,从而,林尼克的定理就是哥德巴赫猜想。林尼克1953年的论文并没有具体定出k的可容许数值,此后四十多年间,人们还是不知道一个多大的k才能使林尼克定理成立。但是按照林尼克的论证,这个k应该很大。其中有个结果必须提到,即李红泽、王天泽独立地得到k=2000。目前最好的结果k=13是英国数学家希思-布朗(D.R.Heath-Brown)和德国数学家普赫塔(Puchta)合作取得的,这是一个很大的突破。数学家们经过上面四个途径的不断探索求证,仍然没有彻底解决哥德巴赫问题。现在我们介绍探讨求证“哥德巴赫猜想”的另一种新方法,我在前人筛法的基础上作出了进一步的改进,定义了“顺筛”和“逆筛”这两个基本概念。就是任意给定一个比较大的偶数2m,通过顺筛和逆筛的办法来达到目的。顺筛就是筛除掉集合{1,3,5,7,9,…,(2m-1)}中的全体奇合数;逆筛就是在集合{1,3,5,7,9,…,(2m-1)}中再筛除掉偶数2m分别减去集合{1,3,5,7,9,…,(2m-1)}中的每一个奇合数而得到的全体奇数;如果我们设奇素数p1,p2,p3,…,pt均为不大于√2m的全体奇素数(pi<pj,i<j,i、j=1,2,3,…,t),t∈N。对于“2m=奇数+奇数”(m≥3)来说,就只有下面几种情形:5(1)2m=奇合数+奇合数,(2)2m=奇合数+奇素数,(3)2m=奇素数+奇素数,(4)2m=1+奇合数,(5)2m=1+奇素数。我们的目的就是要筛除掉(1)和(2)以及(4)或(5)情形中的所有奇数(因为对于偶数2m,(4)和(5)的情形不可能同时成立)。但是下面这两种情形我们不必分析讨论:①偶数2m=p+p,p为奇素数;②集合{(2m-p1),(2m-p2),(2m-p3),…,(2m-pt)}中至少有一个奇数为奇素数。假若(2m-p2)为奇素数,那么2m=(2m-p2)+p2。所以①和②这两种情形,偶数2m已经可表为“奇素数+奇素数”。如果我们能够明确的判定在任意设定的集合{1,3,5,7,9,…,(2m-1)}中,通过顺筛筛除掉集合{1,3,5,7,9,…,(2m-1)}中的全体奇合数,通过逆筛筛除掉偶数2m分别减去集合{1,3,5,7,9,…,(2m-1)}中的每一个奇合数而得到的全体奇数;以及筛除掉1和(2m-1)。集合{1,3,5,7,9,…,(2m-1)}通过这样筛除后,如果集合中还剩下有奇数,那么剩下的奇数必为奇素数,并且必定只满足“奇素数+奇素数=2m”的情形。下面我们举实例阐述这种解决“哥德巴赫猜想”新的基本思想方法。首先我们回顾一下2000多年前埃拉托斯特尼筛法,埃拉托斯特尼筛法可以用来寻找一定范围内的素数(比如说m这个数,m这个数6不是太大):操作的程序是先将第一个数2留下,将它的倍数全部划掉;再将剩余数中最小的3留下,将它的倍数全部划掉;继续将剩余数中最小的5留下,将它的倍数全部划掉,┅,如此直到没有可划的数为止。例如在100内进行这样的操作,可得素数2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97。我们暂且把前人的这种筛法称为埃拉托斯特尼顺筛,简称顺筛。就是通过顺筛,能够把某个很大的偶数M范围内的素数全部筛出来,也未必好确定不大于偶数M的所有偶数均可表为两个奇素数之和。顺筛实际上就是筛出偶数M范围内的所有偶数(除2外)和所有奇合数。如果我们在顺筛的基础上,再配合另外一种筛法,我们暂且把这种筛法称为埃拉托斯特尼逆筛,简称逆筛。逆筛就是筛除掉偶数2m分别减集合{1,3,5,7,9,…,(2m-1)}中的每一个奇合数而得到的全体奇数;对于偶数M范围内的所有正整数,通过顺筛和逆筛配合筛出后,一定能够判定偶数M是否可表为两个奇素数之和。我们以偶数100为例来阐述,因为“哥德巴赫猜想”针对的是奇素数,而奇素数是从奇数中分离出来的概念,所以我们就排出偶数的情形,只考虑奇数的情形。对于偶数100以内的全体奇数,首先进行顺筛:(1)筛出3的倍数,可得集合A1={1,3,5,7,11,13,17,19,23,25,29,31,35,37,41,43,47,49,53,55,59,61,65,67,71,73,77,79,83,85,89,91,95,97}。7(2)在集合A1中筛出5的倍数,可得集合A2={1,3,5,7,11,13,17,19,23,29,31,37,41,43,47,49,53,59,61,67,71,73,77,79,83,89,91,97}。(3)在集合A2中筛出7的倍数,可得集合A3={1,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97}。偶数100以内的全体奇数,经过顺筛后,可以得出下面这样的结论:满足“奇合数+奇合数=100”中的全体奇合数,满足“奇合数+奇素数=100”中的全体奇合数,满足“1+奇合数=100”中的奇合数,全部被筛除。又因为区间[√100,100]以内的任一奇合数均能被奇素数3,5,7中的某一个奇素数整除,这种情形扩展开来的一般情形完全可以证明。其次进行逆筛:(4)在集合A3中筛出集合{(100-9),(100-15),(100-21),(100-27),(100-33),(100-39),(100-45),(100-51),(100-57),(100-63),(100-69),(100-75),(100-81),(100-87),(100-93),(100-99)}={91,85,79,73,67,61,55,49,43,37,31,25,19,13,7,1}中的奇数,可得集合A4={3,5,11,17,23,29,41,47,53,59,71,83,89,97}。(5)在集合A4中筛出集合{(100-21),(100-35),(100-49),(100-63),(100-77),(100-91)}={79,65,51,37,23,9}中的8奇数,可得集合A5={3,5,11,17,29,41,47,53,59,71,83,89,97}。(6)因为100含有奇素数因子5,所以奇素数5要直接筛出。最后得到集合A6={3,11,17,29,41,47,53,59,71,83,89,97}。所以再经过逆筛后,我们可以得出这样的结论:满足“奇合数+奇素数=100”中的全体奇素数,满足“1+奇素数=100”中的奇素数,全部被筛除。显然可得到偶数100=3+97=11+89=17+83=29+71=
本文标题:浅谈“哥德巴赫猜想”证明方法
链接地址:https://www.777doc.com/doc-2312697 .html