您好,欢迎访问三七文档
数学家朱世杰在“宋元四大家”中,朱世杰出生得最晚,因而他非常幸运地获得了南北两地数学研究的精华.由于朱世杰一生从未进入仕途,因此我们对他的家世,成长经历等无从得知,现在我们所拥有的资料大多数都是从他的友人给他的两部著作《算学启蒙》和《四元玉鉴》所作的序言里得到的.朱世杰(1249年-1314年),字汉卿,号松庭,汉族,他的籍贯在北方,居住燕山(也就是今天的北京),但燕山非行政区划,而是山名,位于河北遵化西南的一个山脉.又说“寓燕”,这个“燕”字何意?也不明确.只能大体的说,朱世杰是今河北北部和北京一带的人.朱世杰是元代的著名的数学家以及教育家,他一生都在从事数学研究及数学教育工作,享有“中世纪最伟大的数学家”之誉。朱世杰这个人的生平概况,我们从古籍中了解的不多,只是从书中知道他曾经以数学名家的身份游历全国各地,并且从事教育教学工作.在朱世杰年轻的时候,他就已经遍读了许多北方算学家的著作,如李冶的《测圆海镜》一书,就对他以后的数学研究影响很大.后来他还通过学习李德载的二元术和刘大鉴的三元术,并在这两本书的基础上,懂得了如何建立二元、三元以及多元高次方程组,并求出这些方程组的解集.在十三世纪七十年代时,朱世杰就已经是北方非常知名的算学家了.在公元1279年,元灭南宋以后,朱世杰又来到南方游学.在这里,他不但结识了许多南方的知名数学家,而且还接触到了不少南方的算书,最重要的是秦九韶的《九章算术》和杨辉的著作,这两个人及他们的著作对朱世杰以后的数学研究工作和教育产生了深刻的影响.后来,朱世杰又定居到扬州,向朱世杰学习数学的人蜂拥而至.在大德三年,朱世杰的著作《算学启蒙》在扬州成稿并刊刻出版.《算学启蒙》全书分三卷,共有二十门,其中有259个问题,这本书的内容从浅到深,循序渐进,刚开始是一位数的乘法,其内容有乘法运算的歌诀,除法运算的歌诀、各类面积和体积计算问题的方法,分数运算的运算规律、分式运算的运算规律、垛积法、盈不足术,一直讲到天元术.大德七年,他的代表作《四元玉鉴》也成稿.《四元玉鉴》同样也是由3卷组成的,这三卷的内容包含二十四门,一共收集了288个问题,这288个问题都与方程,或者方程组的求解密切相关.其中有7个是关于四元方程组的问题,有13个是关于三元方程组的问题,还有36个是关于二元方程组的问题.许多求解多元高次方程组的方法都在这本书中得以体现,这些方法包括通过消去未知数来求解,以及用正负开方术来求多元高次方程组的解集.此外,朱世杰的工作还受到南方数学重口诀,重实用的风气影响,不仅如此,他还在书中收集了一些日用算法、商用算法和通俗歌诀,这些歌诀、算法让他的数学工作更加完善.说完他的生平,他还有这样的一个著名轶闻:13世纪末,历经战乱的祖国为元王朝所统一,遭到破坏的经济和文化又很快繁荣起来。蒙古统治者为了兴邦安国,便尊重知识,选拔人才,把各门科学推向新的高峰。有一天,风景秀丽的扬州瘦西湖畔,来了一位教书先生,在寓所门前挂起一块招牌,上面用大字写着:“燕山朱松庭先生,专门教授四元术”。不几天,朱世杰门前门庭若市,求知者络绎不绝,就在朱世杰在接待学生报名之时,突然一声声叫骂声引起他的注意。只见一穿绸戴银半老徐娘,追着一年轻的姑娘,边打边骂,那姑娘被打得皮开肉绽。姑娘蜷成一团,任凭她打,也不跟她回去。朱世杰路见不平,便上前询问,那半老徐娘见冒出一个爱管闲事之人,就嘲笑道:“你难道想抱打不平,你送上50两银子,这姑娘就归你了!”朱世杰见此情景愤怒已极,从口袋里抓出50两银子,摔在半老徐娘面前,拉起姑娘就回到自己的教书之地。原来,那半老徐娘是妓女院的鸨母,而这姑娘的父亲因借鸨母的10两银子,由于天灾,还不起银子,只好卖女儿抵债。今天碰巧遇上朱世杰,才把姑娘救出苦海。后来,在朱世杰的精心教导下,这姑娘也颇懂些数学知识,成了朱世杰的得力助手,不几年,两人便结成夫妻。所以,扬州民间至今还流传着这样一句话:元朝朱汉卿,教书又育人。救人出苦海,婚姻大事成。由这个轶闻我们可以看出朱世杰有一颗乐于助人的心。更加让我们佩服的是:朱世杰的主要贡献是创造了一套完整的消未知数方法,称为四元消法.这种方法在世界上长期处于领先地位,直到18世纪,法国数学家贝祖提出一般的高次方程组解法,才超过朱世杰。除了四元术以外,《四元玉鉴》中还有两项重要成就,即创立了一般的高阶等差级数求和公式及等间距四次内插法公式,后者通常称为招差术.此书代表着宋元数学的最高水平,美国科学史家萨顿称赞它“是中国数学著作中最重要的一部,同时也是中世纪的杰出数学著作之一”。朱世杰处于中国传统数学发展的鼎盛时期,当时社会上“尊崇算学,科目渐兴”,数学著作广为传播。对多元高次方程组解法、高阶等差级数求和,高次内插法都有深入研究,他著有《算学启蒙》(1299年)、《四元玉鉴》(1303年)各3卷,在后者中讨论了多达四元的高次联立方程组解法,联系在一起的多项式的表达和运算以及消去法,已接近近世代数学,处于世界领先地位,他通晓高次招差法公式,比西方早四百年,中外数学史家都高度评价朱世杰和他的名著《四元玉鉴》。从天元术推广到二元、三元和四元的高次联立方程组,是宋元数学家的又一项杰出的创造。留传至今,并对这一杰出创造进行系统论述的是朱世杰的《四元玉鉴》。《四元玉鉴》成书于1303年。全书共3卷,24门,288问,主要论述高次方程组的解法(这也是朱世杰的最大贡献)、高阶等差级数求和以及高次内插法等内容。是流传至今且对四元术进行系统论述的重要代表作。在天元术的基础上,朱世杰建立了“四元高次方程理论”,他把常数项放在中央(即“太”),然后“立天元一于下,地元一于左,人元一于右,物元一于上”,“天、地、人、物”这四“元”代表未知数,(即相当于现在的x、y、z、w,)四元的各次幂放在上、下、左、右四个方向上,其它各项放在四个象限中。如果用现代的x、y、z、w表示天、地、人、物,那我们可以把朱世杰列高次多元方程的方法,可以列出四元高次方程后,再联立方程组进行解方程组,方法是用消元方法解答,先择一元为未知数,其它元组成的多项式作为这未知数的系数,然后把四元四式消去一元,变成三元三式,再消去一元变二元二式,再消去一元,就得到只含一元的天元开方式,然后用增乘开方法求得正根。这是线性方法组解法的重大发展,在西方,较有系统地研究多元方程组要等到16世纪。高阶等差级数求和与高次内插法也是《四元玉鉴》的重要内容。由许多求和问题中的一系列三角垛公式可归纳得公式。此外,还有其它高阶等差级数求和公式。在招差法方面,朱世杰相当于给出了招差公式,这比西方要早400多年。朱世杰是中国历史上最杰出的数学家之一,他的成就已得到国际公认,不过他的工作被埋没了500多年才重见天日。清代很多人研究《算学启蒙》和《四元玉鉴》两书,给《四元玉鉴》做细草的就有罗士琳,沈钦裴,陈棠,戴煦等多人,民国初年还有董化时的工作。随着三上义夫的英文著作的出版,使西方人对朱世杰数学研究有所了解,萨顿在其著作中有朱世杰一小节,并给出了很高的评价,他说:朱世杰“中国数学家,是他的民族,他的时代,并且是所有时代的杰出的最伟大的数学家之一”。旅居新西兰的学者谢元作JohnHoe对《四元玉鉴》进行过深入研究,并用法文出版了一部专著。1971年,美国出版的科学家传记辞典也有朱世杰条,并给予了很高评价。国内对朱世杰的研究,20世纪初有钱宝琮对垛积术的研究和郑之蕃对四元术的研究,20世纪60年代有杜石然的工作。但迄今尚无一本有关朱世杰的全面研究的专著出版。20世纪90年代,在《刘徽评传》中以合传的形式将“朱世杰评传”列入其中。总之,朱世杰是世界公认的中国古代著名的数学家。从他的生平事迹中我学到了:在学习方面,我们应该学会善于总结和探索。在生活中,我们应该学会乐于助人,养成良好的品质。在未来的教学中,要懂得毫无保留的将自己所知道的知识告诉学生。参考文献:傅海伦编著.中外数学史概论[M].北京:科学出版社,2007:107~118钱宝琮著.中国数学史[M].北京:科学出版社,1992:218~220.
本文标题:数学家朱世杰
链接地址:https://www.777doc.com/doc-2331436 .html