您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 江苏省宿迁市宿豫区陆集初级中学初中数学教学论文探究年龄游戏中的奥密
数据产品开发前的必修课分清指标和维度关系既然是数据产品,一定离不开数据图表。而要做图表,首先得确定指标和维度。最直观的说:指标就是图表中纵坐标轴;维度就是横坐标轴。身高,销售量,访问量,收入这些能用数字衡量的,就是指标;而性别,部门,访问来源,地区等不能用数值衡量的,就是维度。指标和维度组成一个数据图表的基本元素。当然,最重要的一种维度就是时间,它的优先级会在其他所有维度之上,下文中会更多地讨论。一般人应该不会分不清指标和维度,去使用一下excel中的数据透视表功能,你就会对指标和维度理解得非常深刻。有对比才有信息,有信息才有价值销售总监向ceo汇报:“上个季度我们销量是100单”。这话其实是没有信息量的。真正有价值的是对比后产生的信息:“上个季度我们销量100单,比上上个季度多了20单,增长25%!”。第一种对比就是时间维度的,纵向的对比。这样就能知道是变好还是变坏。“上个季度我们销售了100单,在所有分公司中排名第一!”这是第二种对比方式,即横向的对比。横向对比不能告诉你变好还是变坏,但能告诉你是好还是坏。那聪明的孩子肯定知道第三种对比方式了。纵向与横向都进行对比,一个指标的价值才会体现。不仅告诉你变好,变多好,还能告诉你哪里变好或者为什么变好。案例一:如图,订单量从纵向和横向(不同规模客户)进行了对比。上图会反应一个很典型的销售分析场景:首先,分管销售和市场的副总裁接被告知销量增长了25%(变好了),然后他会看是什么类型的客户增长了(为什么变好),他发现是50-200人的订单和0-25人的订单增长迅速,那么进一步,他再看看这些客户的地域分布、行业分布或者是所隶属的分公司的分布对比,分析增长的外生因素和企业内生因素。比如,0-25人企业新增量大部分来自超一线城市,原因是政府鼓励学生创业计划,0-25人小微企业大量涌现,导致订单量增加(外生的影响因素);而50-200人的中型企业客户增加,大部分来自珠三角地区的制造业,原因是产品功能上增加了项目管理工具和审批流程,解决了很多中型制造企业的需求(内生因素)。于是,接下去的策略就是在超一线城市增加与小微企业孵化器的bd合作,再增加针对学生类创业人群的定向广告投放;而在珠三角和长三角地区增加销售员数量,用人去触及更多工业园区和企业;结合会销,关键是用精心制作的案例来打动他们。时间维度优先,明确的时间范围和显示颗粒度这条原则不是非常绝对,但是以我的经验,任何数据指标,你都得先纵向地观察变好还是变坏,才有必要去横向切片(用其他维度去探究为什么)。使用场景参考案例一。时间维度不仅要优先,还要区分时间段和显示颗粒度(图表横坐标上标签的密度)两个概念。比如,我要观察公司网站半年来的pv变化趋势,那么需要选择2015.2.1号至2015.8.1号,并且选择按日、周还是月来查看。当然,选择半年跨度按天查看,图表很可能呈现波动巨大且密集的折线图,你会觉得杂乱无章。所以选择以周活着月的颗粒度看,会更直观。补充一点,工具当中如果增加趋势线选项,那会是更棒的。在excel中,可以在“图表布局”的选项卡下找到趋势线,里面有线性、指数、幂、移动平均等模式,是观察一个指标时间维度波动趋势的好帮手。尽量减少表格和静态型图表的呈现表格可以承载很多信息,但不够直观,因此在数据产品中它的呈现要让位于数据图表。静态型图表是指饼图、环形图、树状图等只反映某个指标在某个时间点上的结构分布的图表。这种图表的缺陷就是没有时间维度的对比。在我看来,它更适合用在公关性质或者推广性质的报告中,而对于指导企业运营的数据产品,更合理的方式是采用堆积柱形图。如下图:堆积柱形图,总高度即当月总订单量,不同颜色的部分即不同的客户规模的订单量。用堆积柱形图结合饼图,不仅指标的总量在时间维度变化可以直观看到,各成分的量和占比的变化也变得直观。补充一点,静态型的图标传达信息少,占面积大。这与数据产品要在有限的页面空间中传达足够多的信息(个人认为)是相违背的,所以最好还是作为辅图。具备下钻和筛选的能力案例二:首先,CEO发现公司业绩下滑了,但并不是全公司在销售管道(pipeline)上的普遍下滑,那么就是某几个分公司拖了后腿。接着,他要看看是哪个分公司业绩下滑,甚至是哪个销售经理的业绩下滑。然后,找到了下滑最厉害的销售经理后,CEO要看看他的团队在销售管道的哪个环节出了问题(假设这家公司的销售管道是约访—拜访—签单)。最终发现是约访效率出现大幅下降;检查后发现,是这个销售团队没有好好进行话术的培训。——这就是对下钻的需求找到症结后,CEO决定,要筛选出全公司约访率在这个季度排名在后20%的销售,进行集中的话术培训。——这就是筛选需求这就是通过数据找到问题并针对性进行解决的一个典型。下钻的深度可以随着数据的积累慢慢增加,但下钻和筛选必须同步开发,缺一不可。重视导出和接口,但要重视权限数据产品最终是给企业决策提供依据的,看的人应该是管理层和部分业务层。他们未必都有深入研究的需求,只要通过简洁的操作,直观地发现业务上的问题就行。而对于数据分析岗位(BI),有多样化的研究目的,需要灵活地建立模型。研究方法会不断在变,模型也会不断优化,所以不适合做到固定的数据产品当中。因此对于他们来说,更重要的是数据产品背后的数据仓库。数据仓库变量的建立要全面和详细(数据产品只是呈现一部分),并支持BI们手动导出或者与数据分析软件对接。不要忘记,所有数据是公司的机密,权限需要严格控制。明确内部运营数据产品的目的从上文中的案例和场景描述中,已经清晰地看到:数据产品的目的就是发现运营当中的问题,以决策者地角度去设计功能。从宏观到微观,从纵向观察(时间)再到横向维度的切片,目的就是发现问题,对症下药。【编辑推荐】产品经理学习总结之技术和设计篇面向产品经理的十款最佳分析工具京东搜索下拉框产品个性化探索实践解密京东热门产品背后的技术支持作为产品经理,不应只知道往产品backlog增加新功能
本文标题:江苏省宿迁市宿豫区陆集初级中学初中数学教学论文探究年龄游戏中的奥密
链接地址:https://www.777doc.com/doc-2332130 .html