您好,欢迎访问三七文档
20133Mar.201330183JournalofLvliangEducationInstituteVol.30No.1Sum.No.83【】段馨娜033000不定积分是考试中的重点和难点,学好不定积分十分重要,然而在学习过程中发现题型复杂,见到生题无从下手。本文将对不定积分的题型系统地归纳起来,希望对大家的学习有所帮助。不定积分;思路提示;分部积分法G642A1672-2086201301-0096-03。。、。。1∫Ax-adx=Aln|x-a|+C2∫Ax-andx=-An-11x-an-1+Cn≠13∫dxx2+px+qn=∫dxx+p()22+4q-p2[]4n→x+p2=u4q-p24=a2∫duu2+a2n1.1∫2dxx2+x102∫1-x73x1+x7dx1∫2dxx2+x10=∫2x9dxx102+x10=15∫dx10x102+x10=110∫1x10-12+x()10dx10=110lnx10-ln2+x10+C=ln|x|-110ln2+x10+C2∫1-x73x1+x7dx=∫1-x7x63x71+x7dx=121∫1-x7x71+x7dx7=121∫1x7-21+x()7dx7=13ln|x|-221ln|1+x7|+C2012-04-111983-。69、sinxcosxRsinxcosx∫Rsinxcosxdx。1。sinkxcoskx。2Rsinxcosx。。(一)巧利用1=sin2x+cos2x2.∫dx2sin3xcos5x12sin3xcos5x=sin2x+cos2x2sin3xcos5x=12sinxcos5x+12sin3xcos3x=sin2x+cos2x2sinxcos5x+sin2x+cos2x2sin3xcos3x=12sinxcos3x+sinx2cos5x+12sinxcos3x+12sin3xcosx=1sinxcos3x+sinx2cos5x+sin2x+cos2x2sin3xcosx=sinx2cos5x+sin2x+cos2xsinxcos3x+cosx2sin3x+12sinxcosx=sinx2cos5x+sinxcos3x+cosx2sin3x+32sinxcosx∫dx2sin3xcos5x=∫sinx2cos5x+sinxcos3x+cosx2sin3x+32sinxcos()xdx=18cos4x+12cos2x-14sin2x+32ln|csc2x-cot2x|+C(二)分母可化为单项式的积分类型1+cosx=2cos2x21-cosx=2sin2x23.∫2sinx1+sinxdx∫2sinx1+sinxdx=∫2sinx1-sinxcos2xdx=∫2sinxcos2xdx-∫21-cos2xcos2xdx=2cosx-2tanx+2x+C(三)降幂法4.∫2sin4xcos2xcos3xdx2sin4xcos2xcos3x=sin6x+sin2xcos3x=sin6xcos3x+sin2xcos3x=12sin9x+12sin3x+12sin5x-12sinx∫2sin4xcos2xcos3xdx=12∫sin9x+sin5x+sin3x-sinxdx=118cos9x-110cos5x-16sin3x+12cosx+C、。5.∫5arccosx21-x2槡3dxarccosx=udx=-sinudu.∫5arccosx21-x2槡3dx=∫5u2sin3u-sinudu=52∫udcotu=52ucotu-52ln|sinu|+C=5x21-x2槡arccosx-54ln|1-x2|+C、796.∫fxf'x-f2xf”xf'3x[]dx∫fxf'x-f2xf”xf'3x[]dx=∫fxf'2x-f2xf”xf'3xdx=∫fxf'x·f'2x-fxf”xf'2x[]dx=∫fxf'xdfxf'x()=12fxf'x[]2+C、。7.fx=2x<0x+10≤x≤12xx>{1∫fxdxx<0∫fxdx=∫2dx=2x+C10≤x≤1∫fxdx=∫x+1dx=12x2+x+C2x>1∫fxdx=∫2xdx=x2+C3x=0x=1、C1=C212+1+C2=1+C3C1=C2=C3-12C1=C2=C3-12=C∫fxdx=2x+Cx<012x2+x+C0≤x≤1x2+12+Cx>1、8.In=∫1x2+a2ndxIn=xx2+a2n+2n∫x2+a2-a2x2+a2n+1dx=xx2+a2n+2nIn-2na2∫dxx2+a2n+1=xx2+a2n+2nIn-2na2In+1In+1=12na2xx2+a2n+2n-1I[]nIn=12n-1a2xx2+a2n-1+2n-3In-[]1。。。1.M.1980.2.M.1978.89
本文标题:不定积分的题型归纳
链接地址:https://www.777doc.com/doc-2333001 .html