您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 江苏省镇江市2013年中考数学试卷及答案(word解析版)
江苏省镇江市2013年中考数学试卷一、填空题(本大题共12小题,每小题2分,共24分)1.(2分)(2013•镇江)的相反数是﹣.考点:相反数.专题:计算题.分析:根据相反数的定义:只有符号不同的两个数称互为相反数计算即可.解答:解:+(﹣)=0,故的相反数是﹣,故答案为﹣.点评:本题主要考查了相反数的定义,根据相反数的定义做出判断,属于基础题.2.(2分)(2013•镇江)计算:(﹣2)×=﹣1.考点:有理数的乘法..分析:根据有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘,即可得出答案.解答:解:(﹣2)×=﹣1;故答案为:﹣1.点评:此题主要考查了有理数的乘法,关键是熟练掌握有理数的乘法法则,注意符号的判断.3.(2分)(2013•镇江)若在实数范围内有意义,则x的取值范围是x≥1.考点:二次根式有意义的条件..分析:先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.解答:解:∵在实数范围内有意义,∴x﹣1≥0,解得x≥1.故答案为:x≥1.点评:本题考查的是二次根式有意义的条件,即被开方数大于等于0.4.(2分)(2013•镇江)化简:(x+1)2﹣2x=x2+1.考点:整式的混合运算..专题:计算题.分析:原式第一项利用完全平方公式展开,去括号合并即可得到结果.解答:解:原式=x2+2x+1﹣2x=x2+1.故答案为:x2+1点评:此题考查了整式的混合运算,涉及的知识有:完全平方公式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.5.(2分)(2013•镇江)若x3=8,则x=2.考点:立方根..专题:计算题.分析:根据立方根的定义求解即可.解答:解:∵2的立方等于8,∴8的立方根等于2.故答案:2.点评:此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.6.(2分)(2013•镇江)如图,AD平分△ABC的外角∠EAC,且AD∥BC,若∠BAC=80°,则∠B=50°.考点:平行线的性质..分析:由∠BAC=60°,可得出∠EAC的度数,由AD平分∠EAC,可得出∠EAD的度数,再由AD∥BC,可得出∠B的度数.解答:解:∵∠BAC=80°,∴∠EAC=100°,∵AD平分△ABC的外角∠EAC,∴∠EAD=∠DAC=50°,∵AD∥BC,∴∠B=∠EAD=50°.故答案为:50.点评:本题考查了平行线的性质,解答本题的关键是掌握角平分线的性质及平行线的性质:两直线平行内错角、同位角相等,同旁内角互补.7.(2分)(2013•镇江)有一组数据:2,3,5,5,x,它们的平均数是10,则这组数据的众数是5.考点:众数;算术平均数..分析:根据平均数为10求出x的值,再由众数的定义可得出答案.解答:解:由题意得,(2+3+5+5+x)=10,解得:x=45,这组数据中5出现的次数最多,则这组数据的众数为5.故答案为:5.点评:本题考查了众数及平均数的知识,解答本题的关键是掌握众数及中位数的定义.8.(2分)(2013•镇江)写一个你喜欢的实数m的值0,使关于x的一元二次方程x2﹣x+m=0有两个不相等的实数根.考点:根的判别式..专题:开放型.分析:由一元二次方程有两个不相等的实数根,得到根的判别式大于0,列出关于m的不等式,求出不等式的解集得到m的范围,即可求出m的值.解答:解:根据题意得:△=1﹣4m>0,解得:m<,则m可以为0,答案不唯一.故答案为:0点评:此题考查了根的判别式,熟练掌握一元二次方程根的判别式的意义是解本题的关键.9.(2分)(2013•镇江)已知点P(a,b)在一次函数y=4x+3的图象上,则代数式4a﹣b﹣2的值等于﹣5.考点:一次函数图象上点的坐标特征..分析:把点P的坐标代入一次函数解析式可以求得a、b间的数量关系,所以易求代数式4a﹣b﹣2的值.解答:解:∵点P(a,b)在一次函数y=4x+3的图象上,∴b=4a+3,∴4a﹣b﹣2=4a﹣(4a+3)﹣2=﹣5,即代数式4a﹣b﹣2的值等于﹣5.故答案是:﹣5.点评:本题考查了反比例函数图象上点的坐标特征,经过函数的某点一定在函数的图象上10.(2分)(2013•镇江)如图,AB是半圆O的直径,点P在AB的延长线上,PC切半圆O于点C,连接AC.若∠CPA=20°,则∠A=35°.考点:切线的性质;圆周角定理..专题:计算题.分析:连接OC,由PC为圆O的切线,利用切线的性质得到OC与CP垂直,在直角三角形OPC中,利用两锐角互余根据∠CPA的度数求出∠COP的度数,再由OA=OC,利用等边对等角得到∠A=∠OCA,利用外角的性质即可求出∠A的度数.解答:解:连接OC,∵PC切半圆O于点C,∴PC⊥OC,即∠PCO=90°,∵∠CPA=20°,∴∠POC=70°,∵OA=OC,∴∠A=∠OCA=35°.故答案为:35点评:此题考查了切线的性质,等腰三角形的性质,以及外角性质,熟练掌握切线的性质是解本题的关键.11.(2分)(2013•镇江)地震中里氏震级增加1级,释放的能量增大到原来的32倍,那么里氏7级地震释放的能量是3级地震释放能量的324倍.考点:幂的乘方与积的乘方..分析:设里氏n级地震释放的能量是3级地震释放能量的324倍,根据题意得出方程32n﹣1=3×323﹣1×324,求出方程的解即可.解答:解:设里氏n级地震释放的能量是3级地震释放能量的324倍,则32n﹣1=3×323﹣1×324,32n﹣1=326,n﹣1=6,n=7.故答案为:7.点评:本题考查了幂的乘方和积的乘方的应用,解此题的关键是能根据题意得出方程.12.(2分)(2013•镇江)如图,五边形ABCDE中,AB⊥BC,AE∥CD,∠A=∠E=120°,AB=CD=1,AE=2,则五边形ABCDE的面积等于.考点:等腰梯形的性质;含30度角的直角三角形;勾股定理..分析:延长DC,AB交于点F,作AG∥DE交DF于点G,四边形AFDE是等腰梯形,且∠F=∠D=60°,△AFG是等边三角形,四边形AGDE是平行四边形,求得等腰梯形AFDE的面积和△BCF的面积,二者的差就是所求五边形的面积.解答:解:延长DC,AB交于点F,作AG∥DE交DF于点G.∵AE∥CD,∠A=∠E=120°,∴四边形AFDE是等腰梯形,且∠F=∠D=60°,△AFG是等边三角形,四边形AGDE是平行四边形.设BF=x,∵在直角△BCF中,∠BCF=90°﹣∠F=30°∴FC=2x,∴FD=2x+1.∵平行四边形AGDE中,DG=AE=2,∴FG=2x﹣1,∵△AFG是等边三角形中,AF=FG,∴x+1=2x﹣1,解得:x=2.在直角△BCF中,BC=BF•tanF=2,则S△BCF=BF•BC=×2×2=2.作AH⊥DF于点H.则AH=AF•sinF=3×=,则S梯形AFDE=(AE+DF)•AH=×(2+5)•=.∴S五边形ABCDE=S梯形AFDE﹣S△BCF=﹣2=.故答案是:.点评:本题考查了等腰梯形的判定与性质,直角三角形的性质,正确求得BF的长是关键.二、选择题(本大题共5小题,每小题3分,共15分.在每小题所给出的四个选项中,只有一项是符合题目要求的)13.(3分)(2013•镇江)下列运算正确的是()A.x﹣2x=xB.(xy2)0=xy2C.D.考点:二次根式的乘除法;合并同类项;零指数幂..分析:根据零指数幂,合并同类项,二次根式的乘法,二次根式的性质求出每个式子的值,再判断即可.解答:解:A、x﹣2x=﹣x,故本选项错误;B、(xy2)0在xy2≠0的情况下等于1,不等于xy2,故本选项错误;C、(﹣)2=2,故本选项错误;D、×=,故本选项正确;故选D.点评:本题考查了零指数幂,合并同类项,二次根式的乘法,二次根式的性质的应用,主要考查学生的计算能力.14.(3分)(2013•镇江)二次函数y=x2﹣4x+5的最小值是()A.﹣1B.1C.3D.5考点:二次函数的最值..分析:先利用配方法将二次函数的一般式y=x2﹣4x+5变形为顶点式,再根据二次函数的性质即可求出其最小值.解答:解:配方得:y=x2﹣4x+5=x2﹣4x+22+1=(x﹣2)2+1,当x=2时,二次函数y=x2﹣4x+5取得最小值为1.故选B.点评:本题考查了二次函数最值的求法,求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.15.(3分)(2013•镇江)用半径为6的半圆围成一个圆锥的侧面,则圆锥的底面半径等于()A.3B.C.2D.考点:圆锥的计算..分析:用到的等量关系为:圆锥的弧长=底面周长.解答:解:设底面半径为R,则底面周长=2Rπ,半圆的弧长=×2π×6=2πR,∴R=3.故选A.点评:本题利用了圆的周长公式,弧长公式求解.16.(3分)(2013•镇江)已知关于x的方程2x+4=m﹣x的解为负数,则m的取值范围是()A.B.C.m<4D.m>4考点:解一元一次不等式;一元一次方程的解..分析:把m看作常数,根据一元一次方程的解法求出x的表达式,再根据方程的解是负数列不等式并求解即可.解答:解:由2x+4=m﹣x得,x=,∵方程有负数解,∴<0,解得m<4.故选C..点评:本题考查了一元一次方程的解与解不等式,把m看作常数求出x的表达式是解题的关键.17.(3分)(2013•镇江)如图,A、B、C是反比例函数图象上三点,作直线l,使A、B、C到直线l的距离之比为3:1:1,则满足条件的直线l共有()A.4条B.3条C.2条D.1条考点:反比例函数综合题..分析:如解答图所示,满足条件的直线有两种可能:一种是与直线BC平行,符合条件的有两条,如图中的直线a、b;还有一种是过线段BC的中点,符合条件的有两条,如图中的直线c、d.解答:解:如解答图所示,满足条件的直线有4条,故选A.点评:本题考查了点到直线的距离、平行线的性质、全等三角形等知识点,考查了分类讨论的数学思想.解题时注意全面考虑,避免漏解.三、解答题(本大题共11小题,共81分.解答时应写出必要的文字说明、证明过程或演算步骤)18.(8分)(2013•镇江)(1)计算:;(2)化简:.考点:分式的混合运算;实数的运算;零指数幂..分析:(1)根据负整数指数幂、绝对值、零指数幂的特点分别进行计算,再把所得的结果合并即可;(2)先把除法转化成乘法,再根据乘法的分配律分别进行计算,再进行通分,即可得出答案.解答:解:(1)=﹣1=﹣;(2)=×﹣×===.点评:此题考查了分式的混合运算,用到的知识点是负整数指数幂、绝对值、零指数幂、乘法的分配律,注意运算顺序和结果的符合.19.(10分)(2013•镇江)(1)解方程:(2)解不等式组:.考点:解分式方程;解一元一次不等式组..专题:计算题.分析:(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可确定出解集.解答:解:(1)去分母得:2x﹣1+x+2=0,解得:x=﹣,经检验,x=﹣是分式方程的解;(2),由①得:x≥1,由②得:x>3,则不等式组的解集为x>3.点评:此题考查了解分式方程,以及解一元一次不等式组,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.20.(5分)(2013•镇江)算式:1△1△1=□,在每一个“△”中添加运算符号“+”或“﹣”后,通过计算,“□”中可得到不同的运算结果.求运算结果为1的概率.考点:列表法与树状图法..专题:计算题.分析:根据题意得到添加运算符合的所有情况,计算得到结果,即可求出所求的概率.解答:解:添加运算符合的情况有:“+”,“+”;“+”,“﹣”;“﹣”,“+”;“﹣”“﹣”,共4种情况,算式分别为1+1+1=3;1+1﹣1=1;1﹣1+
本文标题:江苏省镇江市2013年中考数学试卷及答案(word解析版)
链接地址:https://www.777doc.com/doc-2335955 .html