您好,欢迎访问三七文档
智能电网的发展趋势摘要:随着电力系统运行环境的日趋复杂与电力体制改革的不断前进,传统电力网络亟待进一步提升,实现向智能电网的转变。智能电网为电网的发展方向,它的内涵是由绩效目标、性能特征、关键技术与功能实现等4个方面及其之间的关系综合体现的,它们分别规定了智能电网的未来期望收益、应具备的特征性能力、为实现此能力而应当采用的关键性技术以及技术与具体业务需求的结合方式。通过对上述内容的详细阐述,描绘出未来智能电网的框架。关键词:智能电网;自愈;分布式能源;电力市场0引言随着市场化改革的推进、数字经济的发展、气候变化的加剧、环境监管要求日趋严格与国家能源政策的最新调整,电力网络跟电力市场、用户之间的协调和交换越来越紧密、电能质量水平要求逐步提高、可再生能源等分布式发电资源数量不断增加,气候变化初露端倪,传统网络已经难以支撑如此多的发展要求。为此人们提出了发展智能电网(SmartGrid)的设想,实现对传统电网基础上的升级换代。国外许多研究机构和企业正在积极推动智能电建设。例如知识电(IntelliGrid)、现代电网(ModernGrid)、网络智能(GridWise)与智能电网等,可是本质内容基本相似。为了在智能电网领域寻求突破、加强联系与合作,已形成了一个全球性联盟组织。1智能电网概念智能电网并非是一堆先进技术的展示,也不是一种着眼于局部的解决方案。智能电网是以先进的计算机、电子设备和高级元器件等为基础,通过引入通信、自动控制和其他信息技术,从实现对电力网络的改造,达到电力网络更加经济、可靠、安全、环保这一根本目标。为了理解智能电网,需要站在全局性的角度观察问题,综合考虑智能电网的4个维度,即绩效目标、性能特征、技术支撑和功能实现。2智能电网的绩效目标与性能特征2.1绩效目标智能电网的绩效目标可以分为3类,即电网性能目标、经济目标和社会目标。(1)电网性能。a.可靠性——电网应具备向用户不间断供电的能力,这种能力由电网容量充裕度和网络运行安全性达标2个部分组成。b.抗攻击——在电网设备或计算机系统遭到攻击时,电网可以有效地抵御,避免发生大停电或重大损失;抗攻击性还包括提高电网抵御自然灾害的能力。c.改善电能质量——电网除了需要具备事故应对能力外,还应当保证系统的电能质量满足要求。(2)经济目标。a.经济性——在满足电网安全可靠性要求的前提下,电网运行应当符合经济优化原则,进行合理的定价和资源分配,实现市场的长期均衡和短期均衡。b.生产效率——电网的生产应当遵循效率原则,尽可能实现各种资源充分利用,降低资产替换成本和网络损耗,增加资产使用容量,进行有效的成本控制。(3)社会目标。a.用户满意度——电网能够及时准确地发布更多的公共信息,提供多种选择,方便用户的自我管理;在发生紧急事件时提前通知用户,使其能够有效应对;通过提高系统的可靠性,减少用户的停电损失。b.保护环境——电网通过支持或实施对发、输、配、用等环节的技术和体制改造,减少电力生产过程中的温室气体排放和污染,从而在气候变化控制方面做出贡献。c.保障人身安全——电网应尽量避免对作业人员人身伤害,不对公众健康形成影响。d.其他目标——电网还有其他一些绩效目标要求。如随着经济的发展,电网应能满足快速增长的负荷需求;改变传统的集中发电模式,适应分布式能源的发展要求。2.2性能特征智能电网的性能特征界定了它异于其他形式电网建设方案的关键点,也是实现上述绩效目标的内在要求。(1)自愈——稳定可靠。自愈是实现电网安全可靠运行的主要功能,指无需或仅需少量人为干预,实现电力网络中存在问题元器件的隔离或使其恢复正常运行,最小化或避免用户的供电中断。通过进行连续的评估自测,智能电网可以检测、分析、响应、甚至恢复电力元件或局部网络的异常运行。(2)安全——抵御攻击。无论是物理系统还是计算机遭到外部攻击,智能电网均能有效抵御由此造成的对电力系统本身的攻击伤害以及对其他领域形成的伤害;一旦发生中断,也能很快恢复运行。(3)兼容——发电资源。传统电力网络主要是面向远端集中式发电的,通过在电源互联领域引入类似于计算机中“即插即用”技术(尤其是分布式发电资源),电网可以容纳包含集中式发电在内的多种不同类型发电,甚至是储能装置。(4)交互——电力用户。电网运行中与用户设备和行为进行交互,将其视为电力系统的完整组成部分之一,可以促使电力用户发挥积极作用,实现电力运行和环境保护等多方面的收益。(5)协调——电力市场。与批发电力市场甚至是零售电力市场实现无缝衔接;有效的市场设计可以提高电力系统的规划、运行和可靠性管理水平;电力系统管理能力的提升促进电力市场竞争效率的提高。(6)高效——资产优化。引入最先进的IT和监控技术优化设备和资源的使用效益,可以提高单个资产的利用效率,从整体上实现网络运行和扩容的优化,降低它的运行维护成本和投资。(7)优质——电能质量。在数字化、高科技占主导的经济模式下,电力用户的电能质量能够得到有效保障,实现电能质量的差别定价。(8)集成——信息系统。实现包括监视、控制、维护、能量管理(EMS)、配电管理(DMS)、市场运营(MOS)、ERP等和其他各类信息系统之间的综合集成,并实现在此基础上的业务集成。2.3性能特征与绩效的匹配智能电网的性能特征与绩效目标之间存在紧密联系,前者是为后者服务的,某一项性能特征总是对应着一些与之相关的收益3智能网络的技术支撑3.1建立坚强、灵活的网络拓扑坚强、灵活的电网结构我国能源分布与生产力布局很不平衡,为了缓解此现状所带来的不利影响,我国开展了特高压联网工程、直流联网工程、点对点或点对网送电等工程的实施建设。如何进一步、优化特高压和各级电网规划成为需要解决的关键问题。随着电网规模的扩大、互联电网的形成,电网的安全稳定性与脆弱性问题越来越严重,对主网架结构的规划设计要求也相应地提高了。只有灵活的电网结构才能应对自然灾害和社会灾害等突发灾害性事件对电网安全的影响。3.2实现开放、标准、集成的通信系统智能电网的发展对网络安全提出了更高的要求,智能电网需要具有实时监视和分析系统目前状态的能力:既包括识别故障早期征兆的预测能力,也包括对已经发生的扰动做出响应的能力,其监测范围将大范围扩展、全方位覆盖,为电网运行、综合管理等提供外延的应用支撑,而不仅局限于对电网装备的监测。3.3配备高级的电力电子设备电力电子设备可以实现电能质量的改善与控制,为用户提供电能质量满足其特定需求的电力,同时它们也是能量转换系统的关键部分,所以电力电子技术在发电、输电、配电和用电的全过程中均发挥着重要作用。现代电力系统应用的电力电子装置几乎全部使用了全控型大功率电力电子器件、各种新型的高性能多电平大功率变流器拓扑和DSP全数字控制技术,包括可控硅并联电抗器、多功能固态开关、智能电子装置、静止同步补偿器、有源滤波器、动态电压恢复器、故障电流限制器以及高压直流输电所用装置和配网用的柔性输电系统装置等。3.4智能调度技术和广域防护系统智能调度是智能电网建设中的重要环节,调度的智能化是对现有调度控制中心功能的重大扩展,智能电网调度技术支持系统则是智能调度研究与建设的核心,是全面提升调度系统驾驭大电网和进行资源优化配置的能力、纵深风险防御能力、科学决策管理能力、灵活高效调控能力和公平友好市场调配能力的技术基础。调度智能化的最终目标是建立一个基于广域同步信息的网络保护和紧急控制一体化的新理论与新技术,协调电力系统元件保护和控制、区域稳定控制系统、紧急控制系统、解列控制系统和恢复控制系统等具有多道安全防线的综合防御体系智能化调度的核心是在线实时决策指挥,目标是灾变防治,实现大面积连锁故障的预防。3.5高级读表体系和需求的管理智能智能电网的核心在于构建具备智能判断与自适应调节能力的多种能源统一。人网和分布式管理的智能化网络系统,可对电网与用户用电信息进行实时监控和采集,并且采用最经济与最安全的输配电方式将电能输送给终端用户,实现对电能的最优配置与利用,提高电网运营的可靠性和能源利用效率。所以电网的智能化首先需要电力供应机构精确得知用户的用电规律,从而对需求和供应有一个更好的平衡。因此目前国外推动智能电网'智能电网建设,一般以构建高级量测体系为切入点。同时,高级读表体系为电力系统提供了系统范围的可观性。不但可以使用户参与实时电力市场,而且能够实现对诸如远程监测、分时电价和用户侧管理等的更快和准确的系统响应,构建智能化的用户管理与服务体系,实现电力企业与用户之间基本的双向互动管理与服务功能以及营销管理的现代化运行。随着技术的发展,将来的智能电表还可能作为互联网路由器,推动电力部门以其终端用户为基础,进行通信、运行宽带业务或传播电视信号的整合。3.6高级配电自动化高级的配电自动化将包含系统的监视与控制、配电系统管理功能和与用户的交互。为此,高级的配电自动化需要更复杂的控制系统。①系统全部元件必须在一个开放式的通信体系结构内并具有协同工作能力;②将使用经由分布式计算的局部分布式控制;③使用传感器、通信系统和分布式的计算主体,对电力交换系统的扰动快速做出反应,以使其影响最小化。3.7分布式发电技术可再生能源和分布式能源的接入分布式能源包括分布式发电和分布式储能,其中分布式发电技术包括:微型燃气轮机技术、燃料电池技术、太阳能光伏发电技术、风力发电技术、生物质能发电技术、海洋能发电技术、地热发电技术等;分布式储能装置包括蓄电池储能、超导储能和飞轮储能等。4智能电网的功能实现各种先进的技术最终需要与具体的业务环节结合才能发挥作用,为了充分发挥此类技术的作用,还需要对业务相关的其他要素,如组织、流程、人员等,进行调整或提升。智能电网涉及到的业务非常多,为了帮助理解,可以从不同的角度对其进行分类,然后分析不同划分之间的关系,以及它们与智能电网技术之间的关联。4.1业务功能分类与智能电网相关的业务功能分类有业务流、信息流。(1)业务流。业务流是电力企业常见的业务组成模块,主要有交易、调度、生产和管理等4种。(2)信息流[8]。按照业务信息的流转过程,可以将一项业务的实现过程分为数据采集、数据传输、信息集成、分析仿真、信息展现、决策应用等6个阶段。其中,业务培训也可以视为决策应用的4.2业务功能与智能电网技术关联(1)智能电网的基础构件。如新型发电、分布式能源和电网类技术等一次电力设备,电力系统相关的规则模式设计等,它们决定了业务的实施对象和基本原则,因此是开展各项运营工作的基础。(2)智能电网运营业务的功能实现。以智能电网中的调度业务为例,在数据采集环节,可能需要用到数字传感器等先进的量测设备(设备元件类)在进行数据传输时,发达的通信设备和通信标准非常重要(设备元件类)建立强大的分析能力更是调度业务的核心方面,而这离不开快速仿真建模(FSM)之类分析方法的支持(理论方法),更需要功能庞大的应用系统为工具(信息系统)。可见,智能电网技术可以与电力业务实现良好匹配,并在实际运行中体现智能电网的优越性,促进其绩效目标的实现。5结语(1)智能电网的核心是实现对电网运行的快速响应,提高与分布式能源的兼容能力,从而提高整个系统的经济性、可靠性和安全性。(2)智能电网的核心特征是自愈、安全、交互、协调、兼容、高效、优质、集成,分别针对电网的稳定可靠、抗攻击、电力用户、市场、分布式能源、资产、电能质量和信息系统等不同内容。(3)智能电网的关键技术有规则模式、元件设备、理论方法和信息系统等。(4)智能电网的技术通过与电力生产的各项业务实现有机结合,从而体现智能电网的优越性能,提高系统的运营绩效。
本文标题:智能电网的发展趋势
链接地址:https://www.777doc.com/doc-2345493 .html