您好,欢迎访问三七文档
文档来源:弘毅教育园丁网数学第一站.如图,抛物线y=―x2+bx+c与x轴交于A、B两点,与y轴交于点C,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3.(1)求该抛物线所对应的函数解析式;(2)求△ABD的面积;(3)将三角形AOC绕点C逆时针旋转90°,点A对应点为点G,问点G是否在该抛物线上?请说明理由.专题二操作型问题2.如图,在水平地面点A处有一网球发射器向空中发射网球,网球飞行路线是一条抛物线,在地面上落点为B.有人在直线AB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让网球落入桶内.已知AB=4米,AC=3米,网球飞行最大高度OM=5米,圆柱形桶的直径为0.5米,高为0.3米(网球的体积和圆柱形桶的厚度忽略不计).(1)如果竖直摆放5个圆柱形桶时,网球能不能落入桶内?(2)当竖直摆放圆柱形桶多少个时,网球可以落入桶内?文档来源:弘毅教育园丁网数学第一站.张经理到老王的果园里一次性采购一种水果,他俩商定:张经理的采购价y(元/吨)与采购量x(吨)之间函数关系的图象如图中的折线段ABC所示(不包含端点A,但包含端点C).(1)求y与x之间的函数解析式;(2)已知老王种植水果的成本是2800元/吨,那么张经理的采购量为多少时,老王在这次买卖中所获的利润w最大?最大利润是多少?4.利民商店经销甲、乙两种商品.现有如下信息:请根据以上信息,解答下列问题:(1)甲、乙两种商品的进货单价各是多少元?(2)该商店平均每天卖出甲商品500件和乙商品300件.经调查发现,甲、乙两种商品零售单价分别每降0.1元,这两种商品每天可各多销售100件.为了使每天获取更大的利润,商店决定把甲、乙两种商品的零售单价都下降m元.在不考虑其他因素的条件下,当m定为多少时,才能使商店每天销售甲、乙两种商品获取的利润最大?每天的最大利润是多少?文档来源:弘毅教育园丁网数学第一站【知识要点】1.利润最大问题.2.几何图形中的最值问题.3.抛物线型问题.【温馨提示】1.实际问题中自变量的取值范围要看清,不要认为自变量取全体实数.2.由几何图形中的线段长度转化为坐标系中点的坐标时,不要忽视点所在的象限.【方法技巧】1.最大利润问题一般先运用“总利润=总售价-总成本”或“总利润=单件商品利润×销售数量”建立利润与价格之间的二次函数解析式,应用配方法或公式法求出最值.2.几何图形问题常见的有面积的最值、用料的最佳方案、动态几何中的最值等.解题时一般结合面积公式等知识,把要讨论的量表示成另一个量的二次函数的形式,结合二次函数的性质进行分析.3.抛物线型问题解决的关键是进行二次函数建模,依据题意有效的将线段的长度转换为点的坐标.将实际问题中的线段长度转化为两点之间的距离.
本文标题:河北省东光县第二中学九年级数学下册26.3实际问题与二次函数同步练习2(无答案)新人教版
链接地址:https://www.777doc.com/doc-2350296 .html