您好,欢迎访问三七文档
1、文档来源:弘毅教育园丁网数学第一站月月考数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)若集合M={﹣1,0,1},集合N={0,1,2},则M∪N等于()A.{0,1}B.{﹣1,0,1}C.{0,1,2}D.{﹣1,0,1,2}2.(3分)方程组的解构成的集合是()A.{(1,1)}B.{1,1}C.(1,1)D.{1}3.(3分)下列各组函数是同一函数的是()①f(x)=与g(x)=x;②f(x)=|x|与g(x)=()2;③f(x)=x0与g(x)=;④f(x)=x2﹣2x﹣1与g(t)=t2﹣2t﹣1.A.①②B.①③C.③④D.①④4.(3分)下列函数中,既是奇函数又是增函数的为()A.y=x+1B.y=﹣x2C.D.y=x|x|5.(3分)已知函数h(x)=4x2﹣kx﹣8在上是单调函数,则k的取值范围是()A.(﹣∞,40]B.∪,则y=f(2x﹣1)的定义域为()A.B.C.D.9.(3分)定义在R上的函数f(x)对任意两个不相等实数a,b,总有>0成立,则必有()A.f(x)在R上是增函数。
2、B.f(x)在R上是减函数C.函数f(x)是先增加后减少D.函数f(x)是先减少后增加10.(3分)设,则()A.y3>y1>y2B.y2>y1>y3C.y1>y3>y2D.y1>y2>y311.(3分)若不等式ax2+2ax﹣4<2x2+4x对任意实数x均成立,则实数a的取值范围是()A.(﹣2,2)B.(﹣2,2]C.(﹣∞,﹣2)∪文档来源:弘毅教育园丁网数学第一站.(3分)已知函数是R上的增函数,则a的取值范围是()A.﹣3≤a<0B.﹣3≤a≤﹣2C.a≤﹣2D.a<0二、填空题(本大题共4小题,每小题3分,共12分.把答案填在答题卷中的相应横线上)13.(3分)若函数f(x)=(k﹣2)x2+(k﹣1)x+3是偶函数,则f(x)的递减区间是.14.(3分)已知f()=x+2,则f(x)=.(指出x范围)15.(3分)设f(x)=,则f{f}=.16.(3分)设非空集合{x|a≤x≤b}满足:当x∈S时,有x2∈S,给出如下三个命题:①若a=1,则S={1}②若a=﹣,则≤b≤1;③若b=,则﹣≤a≤0.其中正确命题是.三、解答题(本大题共5小题,共52分.解答时应写出文字说。
3、明、证明过程或演算步骤)17.(10分)(1)(27)0﹣÷(2).18.(10分)设集合A={x|﹣1<x<4},,C={x|1﹣2a<x<2a}.(1)若C=∅,求实数a的取值范围;(2)若C≠∅且C⊆(A∩B),求实数a的取值范围.19.(10分)已知函数f(x)=x+(Ⅰ)判断函数的奇偶性,并加以证明;(Ⅱ)用定义证明f(x)在(0,1)上是减函数;(Ⅲ)函数f(x)在(﹣1,0)上是单调增函数还是单调减函数?(直接写出答案,不要求写证明过程).文档来源:弘毅教育园丁网数学第一站.(10分)已知函数f(x)是定义在R上的偶函数,且当x≤0时,f(x)=x2+2x.(1)现已画出函数f(x)在y轴左侧的图象,如图所示,请补出完整函数f(x)的图象,并根据图象写出函数f(x)的增区间;(2)写出函数f(x)的解析式和值域.21.(12分)已知函数y=f(x),(x≠0)对于任意的x,y∈R且x,y≠0满足f(xy)=f(x)+f(y).(Ⅰ)求f(1),f(﹣1)的值;(Ⅱ)判断函数y=f(x),(x≠0)的奇偶性;(Ⅲ)若函数y=f(x)在(0,+∞)上是增函数,解不等式f(x)。
4、+f(x﹣5)≤0.河南省郑州四十七中2014-2015学年高一上学期10月月考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)若集合M={﹣1,0,1},集合N={0,1,2},则M∪N等于()A.{0,1}B.{﹣1,0,1}C.{0,1,2}D.{﹣1,0,1,2}考点:并集及其运算.专题:计算题.分析:集合M和集合N都是含有三个元素的集合,把两个集合的所有元素找出写在花括号内即可,注意不要违背集合中元素的互异性.解答:解:因为M={﹣1,0,1},N={0,1,2},所以M∪N={﹣1,0,1}∪{0,1,2}={﹣1,0,1,2}.故答案为D.点评:本题考查了并集及其运算,考查了并集的概念,是会考题型,是基础题.2.(3分)方程组的解构成的集合是()A.{(1,1)}B.{1,1}C.(1,1)D.{1}文档来源:弘毅教育园丁网数学第一站考点:集合的表示法.专题:计算题.分析:通过解二元一次方程组求出解,利用集合的表示法:列举法表示出集合即可.解答:解:解得所以方程组的解构成的集合是。
5、{(1,1)}故选A.点评:本题主要考查了集合的表示法:注意集合的元素是点时,一定要以数对形式写,属于基础题.3.(3分)下列各组函数是同一函数的是()①f(x)=与g(x)=x;②f(x)=|x|与g(x)=()2;③f(x)=x0与g(x)=;④f(x)=x2﹣2x﹣1与g(t)=t2﹣2t﹣1.A.①②B.①③C.③④D.①④考点:判断两个函数是否为同一函数.专题:函数的性质及应用.分析:根据函数的定义域相同,对应关系也相同的两个函数是同一函数,对每一组函数进行判断即可.解答:解:对于①,f(x)==|x|=﹣x,与g(x)=x的对应关系不同,不是同一函数;对于②,f(x)=|x|(x∈R),g(x)=()2=x(x≥0),它们的定义域不同,对应关系也不同,不是同一函数;对于③,f(x)=x0=1(x≠0),g(x)==1(x≠0),它们的定义域相同,对应关系也相同,是同一函数;对于④,f(x)=x2﹣2x﹣1(x∈R),g(t)=t2﹣2t﹣1(t∈R),它们的定义域相同,对应关系也相同,是同一函数;综上,是同一函数的是③④.故选:C.点评:本题考查了判断两个函数是否为同一函数。
6、的问题,解题时应判断它们的定义域是否相同,对应关系是否也相同,是基础题.4.(3分)下列函数中,既是奇函数又是增函数的为()文档来源:弘毅教育园丁网数学第一站.y=x+1B.y=﹣x2C.D.y=x|x|考点:函数奇偶性的判断;函数单调性的判断与证明.专题:探究型.分析:对于A,非奇非偶;对于B,是偶函数;对于C,是奇函数,但不是增函数;对于D,令f(x)=x|x|=,可判断函数既是奇函数又是增函数,故可得结论.解答:解:对于A,非奇非偶,是R上的增函数,不符合题意;对于B,是偶函数,不符合题意;对于C,是奇函数,但不是增函数;对于D,令f(x)=x|x|,∴f(﹣x)=﹣x|﹣x|=﹣f(x);∵f(x)=x|x|=,∴函数是增函数故选D.点评:本题考查函数的性质,考查函数的奇偶性与单调性的判断,属于基础题.5.(3分)已知函数h(x)=4x2﹣kx﹣8在上是单调函数,则k的取值范围是()A.(﹣∞,40]B.∪上是单调函数,则区间应完全在对称轴x=的同侧,由此构造关于k的不等式,解得k的取值范围解答:解:函数h(x)=4x2﹣kx﹣8的对称轴为x=若函数h(x)=4x2﹣kx﹣8在。
7、上是单调函数,则≤5或≥20解得k≤40或k≥160故k的取值范围是(﹣∞,40]∪应完全在对称轴x=的同侧)是解答的关键.6.(3分)已知集合A={x|x<a},B={x|1<x<2},且A∪(∁RB)=R,则实数a的取值范围是()A.a≤2B.a<1C.a≥2D.a>2考点:交、并、补集的混合运算.分析:由题意知集合A={x|x<a},B={x|1<x<2},然后根据交集的定义和运算法则进行计算.解答:解:∵集合A={x|x<a},B={x|1<x<2},∴∁RB={x|x≤1或x≥2},因为A∪∁RB=R,所以a≥2,故选C.文档来源:弘毅教育园丁网数学第一站点评:此题主要考查一元二次不等式的解法及集合的交集及补集运算,一元二次不等式的解法及集合间的交、并、补运算是2015届高考中的常考内容.7.(3分)已知f(x)=ax5+bx3+1且f(5)=7,则f(﹣5)的值是()A.﹣5B.﹣7C.5D.7考点:函数奇偶性的性质;函数的值.专题:计算题;函数的性质及应用.分析:注意到5与﹣5互为相反数,可借助于函数奇偶性求解.解答:解:f(x)=ax5+bx3+1,所以f(﹣x)=﹣a。
8、x5﹣bx3+1.f(x)+f(﹣x)=2所以f(5)+f(﹣5)=2f(﹣5)=2﹣7=﹣5故选A点评:本题考查函数值求解,函数奇偶性的灵活应用.8.(3分)若函数y=f(x+1)的定义域是,则y=f(2x﹣1)的定义域为()A.B.C.D.考点:函数的图象与图象变化;函数的定义域及其求法.专题:计算题.分析:由题意得函数y=f(x+1)的定义域为x∈,即﹣1≤x+1≤4,所以函数f(x)的定义域为.由f(x)与f(2x﹣1)的关系可得﹣1≤2x﹣1≤4,解得0≤x≤.解答:解:因为函数y=f(x+1)的定义域为x∈,即﹣1≤x+1≤4,所以函数f(x)的定义域为.由f(x)与f(2x﹣1)的关系可得﹣1≤2x﹣1≤4,解得0≤x≤..所以函数f(2x﹣1)定义域为故选A.点评:解决此类问题的关键是熟练掌握求函数定义域的方法,如含分式的、含根式的、含对数式的、含幂式的以及抽象函数求定义域.9.(3分)定义在R上的函数f(x)对任意两个不相等实数a,b,总有>0成立,则必有()A.f(x)在R上是增函数B.f(x)在R上是减函数C.函数f(x)是先增加后减少D.函数f(x)是先减少后增。
9、加考点:函数单调性的判断与证明.专题:常规题型;函数的性质及应用.分析:由单调性的定义说明单调性即可.文档来源:弘毅教育园丁网数学第一站解答:解:∵定义在R上的函数f(x)对任意两个不相等实数a,b,总有>0成立,即对任意两个不相等实数a,b,若a<b,总有f(a)<f(b)成立,f(x)在R上是增函数.故选A.点评:本题考查了函数单调性的变形应用,属于基础题.10.(3分)设,则()A.y3>y1>y2B.y2>y1>y3C.y1>y3>y2D.y1>y2>y3考点:指数函数的单调性与特殊点.专题:函数的性质及应用.分析:化简这三个数为2x的形式,再利用函数y=2x在R上是增函数,从而判断这三个数的大小关系.解答:解:∵=21.8,=(23)0.48=21.44,=21.5,函数y=2x在R上是增函数,1.8>1.5>1.44,∴21.8>21.5>21.44,故y1>y3>y2,故选C.点评:本题主要考查指数函数的单调性和特殊点,体现了转化的数学思想,属于基础题.11.(3分)若不等式ax2+2ax﹣4<2x2+4x对任意实数x均成立,则实数a的取值范围是()A.(﹣2,2)B.(。
10、﹣2,2]C.(﹣∞,﹣2)∪考点:函数恒成立问题.专题:计算题;函数的性质及应用.分析:将原不等式整理成关于x的二次不等式,结合二次函数的图象与性质解决即可,注意对二次项系数分类讨论解答:解:不等式ax2+2ax﹣4<2x2+4x,可化为(a﹣2)x2+2(a﹣2)x﹣4<0,当a﹣2=0,即a=2时,恒成立,合题意.当a﹣2≠0时,要使不等式恒成立,需,解得﹣2<a<2.所以a的取值范围为(﹣2,2].故选B.点评:本题考查求不等式恒成立的参数的取值范围,考查分类讨论的数学思想,属于中档题.文档来源:弘毅教育园丁网数学第一站.(3分)已知函数是R上的增函数,则a的取值范围是()A.﹣3≤a<0B.﹣3≤a≤﹣2C.a≤。
本文标题:河南省郑州四十七中2014-2015学年高一数学上学期10月月考试卷(含解析)
链接地址:https://www.777doc.com/doc-2352529 .html