您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 概率论与数理统计(刘建亚)习题解答第3章
1概率论与数理统计(刘建亚)习题解答——第三章3-1解:1283)3,1()3,2()5,1()5,2()53,21(FFFFYXP3-2解:YX-1120001/21.501/41/821/8003-3解:YX1234.)(iipxXP11/40001/421/81/8001/431/121/121/1201/441/161/161/161/161/4jjpyYP.)(25/4813/487/481/1613-4解:X的取值:3,4;Y的取值:1,2。所以)2,1(),4(45243jCCCjYjXPjjYX12203/532/5023-5解:(1)由归一性112),(040300)43(AdyedxeAdydxAedydxyxfyxyx∴A=1(2)当0,0yx时)1)(1(12),(),(4300)43(yxxyvuxyeedvduedvduvufyxF当yx,为其它时,0),(yxF∴其它00,0)1)(1(),(43yxeeyxFyx(3))1)(1(12)20,10(831020)43(eedydxeYXPyx3-6解:由分布函数的性质0)2)(2arctan()3arctan)(2arctan(lim),(0)3arctan)(2()3arctan)(2arctan(lim),(1)2)(2()3arctan)(2arctan(lim),(CxBAyCxBAxFyCBAyCxBAyFCBAyCxBAFyxyx三式联立解得2,2,12CBA)9)(4(61)3(131)2(1211),(),(2222222yxyxyxyxFyxf3-7解:(1)当10x时xxdyxyxdyyxfxfX322)3(),()(2202当10xx或时,∵0),(yxf∴0)(xfX3其它010322)(2xxxxfX(2)当20y时,3161)3(),()(102ydxxyxdxyxfyfY当y为其它时,∵0),(yxf∴0)(yfY其它0203161)(yyyfY3-8解:所包含的面积为61)(1102102dyxxdydxSxxD∴其它0),(6),(Dyxyxf(1)当10x时,)(66),()(22xxdydyyxfxfxxX当x为其它时,0)(xfX∴其它010)(6)(2xxxxfX(2)当10y时,)(66),()(yydxdxyxfyfyyY当y为其它值时,0)(yfY∴其它010)(6)(yyyyfY3-9解:(1)当10x时,xdydyyxfxfxxX21),()(当x为其它时,0)(xfX∴其它0102)(xxxfX(2)当1xy时,ydxdxyxfyfyY11),()(14当y为其它值时,0)(yfY∴其它011)(xyyyfY(3)其它0111)(),()|(|xyyyfyxfyxfYYX其它01021)(),()|(|xxxfyxfxyfXXY3-10解:由归一性616),(10102AAdydxAxydydxyxf当10x时,xdyxydyyxfxfX26),()(102当x为其它时,0)(xfX∴其它0102)(xxxfX同理,其它0103)(2yyyfY其它01,06)()(2yxxyyfxfYX即),()()(yxfyfxfYX,∴X,Y相互独立。3-11YX12311/61/91/1821/31/a1/b解:X,Y的边缘分布分别为5X12pi.1/31/3+1/a+1/bY123p.j1/21/9+1/a1/18+1/b若X,Y相互独立,则P(X=i,Y=j)=P(X=i)P(Y=j)P(X=1,Y=2)=P(X=1)P(Y=2)⇒1/9=1/3(1/9+1/a)⇒a=9/2;P(X=1,Y=3)=P(X=1)P(Y=3)⇒1/18=1/3(1/18+1/b)⇒b=9。X,Y的边缘分布分别为:X12pi.1/32/3Y123p.j1/21/31/6因X,Y相互独立,则P(X=i|Y=1)=P(X=i)所以P(X=1|Y=1)=P(X=1)=1/3;P(X=2|Y=1)=P(X=2)=2/3。3-12解:(1)∵X,Y相互独立,∴其它00,0)()(),()(yxeyfxfyxfyxYX;(2)∵X,Y相互独立,∴11011)()1()0|1(edxedxxfXPYXPxX3-13解:2112101121),()1(eedxdyedxdyyxfYXPxxyyx3-14解:6∵X,Y相互独立,∴dxxzfxfzfYXZ)()()(当0z时,)1(3121)(63032zzzxzxZeedxeezf当0z时,)0)(zfZ∴000)1()(63zzeezfzzZ3-15解:dyyfyzfzfYXZ)()()(由已知条件当10yz时,即zyz1时,0)(yzfX;当0y时,0)(yFY(1)当0z时,由10yz得0zy∴0)(zfZ(2)当10z时,由10yz及0y得zy0∴zzyZedyezf1)(0(3)当1z时,由10yz得zyz1∴zzzzyZeedyezf)1(1)(综上得110100)()1(zeezezzfzzzZ3-16解:略。3-17解:当0x时,0)(xFX;7当0x时,xxtxXXedtedttfxF1)()(0∴0001)(xxexFxX同理,0001)(yyeyFyY(1)串联,寿命取决于最短的,),min(YXZ当0z时,0)(minzF当0z时,zYXezFzFzF)(min1)(1)(11)(0001)()(minzzezFz000)()()()('minminzzezFzfz(2)并联,寿命取决于最长的,),max(YXZ,同理得000)1)(1()(maxzzeezFzz000)()()()('maxmaxzzeeezFzfzzz
本文标题:概率论与数理统计(刘建亚)习题解答第3章
链接地址:https://www.777doc.com/doc-2362452 .html