您好,欢迎访问三七文档
习题七1.解:因为[0,]XU,()2EX,由于11mA,即2X,解之得,的矩估计量为2X.2.解:正态分布的密度函数为22()21()2xfxe似然函数:22221()()222211()(2)2niiinxxniLee所以,2221()ln()ln(2)22niinxL似然方程组:2122241ln1()0ln11()022niiniiLxLnx解之得,所以和2的极大似然估计分别是22211ˆˆ,()niiXxXBn{}{}()XttPXtP,所以{}PXt的极大似然估计为()t,其中22211ˆˆ,()niiXxXBn.3.解:(1)因为110()1EXxxdx,由于11mA,即1X,解之得,的矩估计量为1XX.(2)似然函数:1111()()nnniiiiLxx,所以,11ln()ln(1)ln()ln(1)lnnniiiiLnxnx,似然方程:1ln()ln0niiLnx,解之得,的极大似然估计为1lnniinx.4.解:(1)1,0()0,0xexfxx似然函数:1111()niiixxnniLee,所以,1ln()lnniixLn,似然方程:12ln()0niixLn,解之得,的极大似然估计为11niixxn.(2)1(),0,()0,0xxexfxx已知似然函数:11111()()()()niiinnxxniiiiLxexe,所以,11ln()lnln(1)ln()nniiiiLnnxx,似然方程:1ln()niiLnx解之得,的极大似然估计为1niinx.(3)1{}(1),1,2,.xPXxx似然函数:111()(1)(1)niiinxnxniL,所以,1ln()ln()ln(1)niiLnxn,似然方程:1ln()01niixnLn,解之得,的极大似然估计为111niiXx.5.解:由于~()XP,所以(),()iiEXDX,且1,,nXX之间相互独立,从而2(),()ExEs,对于任意[0,1],22((1))()(1)()(1)ExsExEs,所以2(1)xs也是的无偏估计.6.解:因为总体均值为()EX,总体方差为2()DX,由于样本均值是总体均值的无偏估计,样本方差是总体方差的无偏估计,所以12()()ExEx,22212()()EsEs,1122112212121212()()()()nxnxnExnExnnExEnnnnnn222222221122112212121212(1)(1)(1)()(1)()(1)(1)()()222wnsnsnEsnEsnnEsEnnnnnn因此,2,wxs分别是总体均值,总体方差2的无偏估计量.7.解:由已知,2(),()iiExDx,且1,,nxx之间相互独立,所以,2222()()(),iiiExDxEx211()()(),iiiiExxExEx11111222221111111111(())((2))((2))nnnnniiiiiiiiiiiiiiiECxxECxxxxECxxxx111222222211111(()2()())((1)()2(1)(1)())nnniiiiiiiCExExxExCnnn222(1)2(1)CnCn,若使1211()niiiCxx为2的无偏估计,只要222(1)Cn,即12(1)Cn.8.解:(1)由于16111.1531,0.01,16,0.0516iixxn,~(0,1)/XuNn对于给定的=0.05,查附表可确定0.05/2u,使0.05/2()10.050.95Puu,即0.05/20.05/20.95PXuXunn,因此的0.95置信区间是0.05/20.01/(1.15311.96)(1.1483,1.1581)4xun.(2)162211()0.000133,0.011515iisxxs,取~(1)/xttnsn,对于给定的=0.05,查附表可确定0.05/2t,使0.05/2()10.050.95Ptt,即0.05/20.05/20.95ssPXttXtnn,因此的0.95置信区间是0.05/20.0115/(1.15312.1314)(1.1470,1.1592)4xtSn.9.由于1010221111457.5,()1212.5,34.82,10,0.05109iiiixxsxxsn,取~(1)/xttnsn,对于给定的=0.05,查附表可确定0.05/2t,使0.05/2()10.050.95Ptt,即0.05/20.05/20.95ssPXttXtnn,因此的0.95置信区间是0.05/234.82/(457.52.2622)(431.24,483.76)3xtSn.10.由于7.77,1.85,2500,0.05xsn,取~(1)/xttnsn,对于给定的=0.05,查附表可确定0.05/2t,使0.05/2()10.050.95Ptt,即0.05/20.05/20.95ssPXttXtnn,因此的0.95置信区间是0.05/20.0251.85/(7.77(2499))50xtSnt.11.由于11,9,0.05sn,22)1(Sn~)1(2n.由2221/2/22(1)(1)(1)1nSPnn,因而2的0.95置信区间为22222200250.975(1)(1)811811,,(55.2055,444.0978)(8)(8)17.53452.1797nSnS,从而的0.95置信区间为(55.2055,444.0978)(7.4300,21.0736).12.由于2212121220,5.32,2.18,5.76,1.76,nnxSyS,22222112212(1)(1)192.18191.763.925(2)38wnSnSSnn,1.9811wS取1212()11wXYtSnn~)2(21nnt.由12/ttP,可得21的0.95置信区间为0.0512122112(2)5.325.762.02441.9811(1.7413,0.8613)19wXYtnnSnn13.由于121250,60,41.23,10.3,26.12,4.95nnxSyS,因为1n,250n,我们可以用21、22的无偏估计量21S、22S来代替21、22进行计算,即可得到大样本时21的0.95置信区间为2222120.0512210.34.9541.2326.121.96(11.9922,18.2278)5060SSXYunn14.由于121216,21,186,216nnSS,取)1,1(~/2122212221nnFSSF.由1/212/212(1,1)(1,1)1PFnnFFnn,可得2212的0.95置信区间为222211222220.0251220.97512111861186,,2.76(0.2885,2.0465)(1,1)(1,1)2162.57216SSSFnnSFnn
本文标题:概率论与数理统计统计课后习题答案_总主编_邹庭荣_主编_程述汉_舒兴明_第七章
链接地址:https://www.777doc.com/doc-2362566 .html