您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 概率论试卷BB附详细答案解析
···········································································································装订线··································································································山东建筑大学试卷共3页第1页2008至2009第1学期课程名称概率论与数理统计试卷(B)专业:理工科各专业考试性质:闭卷考试时间120分钟题号一二三总分分数一、填空题(每题3分,共24分)1、若AB,为随机事件,且6.0)(AP,2.0)(ABP,当A与B互不相容时,)(BP。2、若每次试验时A发生的概率都是2.0,X表示50次独立试验中事件A发生的次数,()DX3、若随机变量21,XX相互独立,且1X~)3,3(2N,2X~)2,1(2N。令212XXX,则()DX4、设1621,,,XXX是来自总体X),4(~2N的简单随机样本,2已知,令161161iiXX,则统计量164X服从的分布为(必须写出分布的参数)。5、已知随机变量X的分布列为X12345P2a0.10.3a0.3则常数a=____________。6、设随机变量[0,6]X在区间上服从均匀分布,则关于未知量x的方程2210xXx有实根的概率为_____7、设随机变量X的数学期望()7EX,方差()5DX,用切比雪夫不等式估计得212PX.8、设有40件产品,其中有4件次品,从中不放回的任取10次,每次取一件,则最后一件取的为次品的概率是二、选择题(每题3分,共24分)1、将两封信随机地投入四个邮筒中,则未向前面两个邮筒投信的概率为()A2242;B2412CC;C24A2!;D4!2!2、设)4,1(~NX,且6179.0)3.0(,6915.0)5.0(,则(01.6)PX()。A0.3094;B0.1457;C0.3541;D0.25433、.已知随机变量X和Y相互独立,且它们分别在区间[1,3]和[2,4]上服从均匀分布,则E(XY)=()A.3B.6C.10D.124、如果函数,()0,xaxbfx其他是某连续随机变量X的概率密度,则区间[,]ab可以是()A[0,1]B[0.2]C[20,]D[1,2]5.设总体X,12,,,nXXX是取自总体X的一个样本,X为样本均值,则不是总体期望的无偏估计量的是()(A)X;(B)123XXX;(C)1230.20.30.5XXX;(D)1niiX6、设总体X~)1,(N,12,.nXXX为来自总体X的一组样本,记11212ˆ33XX,21213ˆ44XX,31211ˆ22XX,41223ˆ55XX,在这四个的无偏估计量中,最有效的是()A、1ˆB、2ˆC、3ˆD、4ˆ7、设二维随机向量(X,Y)的联合分布列为YX0120121211221221211210122121122则P{X=0}=()A.121B.61C.41D.1258、设随机变量X有密度其它010,4)(3xxxf则使概率)()(aXPaXP的常数a()(A)421(B)42(C)321(D)4211班级______________姓名______________学号______________山东建筑大学试卷共3页第2页三、计算应用题(共52分)1、(6分)某电子设备厂所用的晶体管由甲乙丙三家元件制造厂提供。已知甲乙丙三厂的次品率分别为0.02,0.01,0.03,又知三个厂提供晶体管的份额分别为0.15,0.80,0.05,设三个厂的产品是同规格的(无区别标志),且均匀的混合在一起。求在混合的晶体管中随机的取一支是次品的概率。2、(10分)设连续型随机变量X的密度为5,0()0,0.xKexfxx①确定常数K;②求}2.0{XP③求分布函数)(xF.3、(8分)设随机变量1,0~NX,12XY,试求随机变量Y的密度函数.···········································································································装订线··································································································山东建筑大学试卷共3页第3页4、(10分)设(,)XY的概率密度为0,,(,).0,xyxefxy其它求(1)边缘概率密度(),()XYfxfy;(2)(1)PXY;5、(12分)设总体X的密度函数为1,01,),(1xxxxf其中未知参数1,nXXX,,,21为取自总体X的简单随机样本,求参数的矩估计量和极大似然估计量.6、(6分)有一大批糖果,现从中随机地抽取16袋,称得重量的平均值503.75x克,样本方差6.2022S。求总体均值的置信度为0.95的置信区间。(已知0.025152.13t,0.025162.12t,975.0)96.1()2008-2009-2《概率论与数理统计》试题(B)参考答案和评分标准···········································································································装订线··································································································一、填空题(每题3分,共24分)1、0.2;2、8;3、25;4、)1,0(N;5、0.1;6、65;7、54;8、0.1二、选择题(每题3分,共24分)1、A;2、A;3、A;4、C;5、D;6、C;7、D;8、A三、计算应用题(共52分)1、(6分)解:全概率公式()0.150.020.800.010.050.03(4)0.0125(2)PA分分2、(10分)解:①0501()01(2)5xxdxdxKedxK分故5K。(1分)②510.2(0.2)50.3679.xPXedxe(3分)③当x0时,F(x)=0;(1分)当0x时,xxxxedxedxdxxxF500515)()((2分)故00,,01)(5xxexFx.(1分)3、(8分)解:随机变量X的密度函数为2221xexfx(1分)设随机变量Y的分布函数为yFY,则有1122yXPyXPyYPyFY(2分)①.如果01y,即1y,则有0yFY;②.如果1y,则有1112yXyPyXPyFY102112222221yxyyxdxedxe即:001221022yydxeyFyxY(3分)所以,0011212221yyyeyFyfyYY即:00112121yyeyyfyY.(2分)4、(10分)解:(1)()(,)Xfxfxydy(1分)00,0,0.xxxedyx0,0,,0.xxxex(2分)0,0()(,),0.Yxyyfyfxydxedxy0,0,,0.yyey(3分)(2)1(1)(,)xyPXYfxydxdy(2分)1120yxyedxdy1111220()12yyeeedyee.(2分)5、(12分)解:1)()(11dxxxdxxxfXE(3分)令XEX,即X1,得参数的矩估计量为1ˆXX(3分)似然函数为其他,0),,2,1(1,),()(111nixxxfLiniinnii(2分)当),,2,1(1nixi时,0)(L,niixnL1ln)1(ln)(ln0ln)(ln1niixndLd(2分)得参数的极大似然估计值为niixn1lnˆ(2分)6、(6分)解:置信区间为6.2022503.752.131516,(4分)即500.45,507.05(2分)
本文标题:概率论试卷BB附详细答案解析
链接地址:https://www.777doc.com/doc-2362677 .html