您好,欢迎访问三七文档
Raman光谱测温Raman信号与物质极化率有关,温度改变引起极化率的变化从而改变Raman信号,可以根据Raman信号的变化进行温度的检测以及传热的分析。Raman测温的方法主要包括:Raman强度测温,Raman频率测温和Raman半高宽测温。当前对于材料的Raman测温研究主要是硅、碳纳米管、石墨烯、金刚石等。[1]1Raman强度测温原理:能级上的粒子数在平衡时遵从Boltzmann分布,在平衡态下𝑁个全同粒子分布在其单粒子任一可及能级𝜀𝑖(i=1,2,3,…,为单粒子能级的标号)上最可几粒子数𝑛𝑖由下式确定:𝑛𝑖=𝑁𝑞𝜔𝑖exp(−𝜀𝑖/𝑘𝑇)式中:𝜔𝑖为能级𝜀𝑖的简并度;𝑘为Boltzmann常数;𝑇为热力学温度;𝑞为单粒子配分函数。Strokes散射和Anti-Strokes散射分别对应于低能级到高能级的跃迁或高能级到低能级的跃迁。Raman散射的Strokes线的光强IS和Anti-strokes光强IAS分别为:𝐼S∝1/[1−exp(−ℏ𝜔𝑘/𝑘𝐵𝑇)]𝐼S∝1/[exp(+ℏ𝜔𝑘/𝑘𝐵𝑇)−1]式中:𝑘𝐵是Boltzmann常数,𝑇是绝对温度,ℏ是约化Planck常量。两者的强度比为:𝐼𝑘,𝑆/𝐼𝑘,𝐴𝑆∝exp(ℏ𝜔𝑘/𝑘𝐵𝑇)可以通过测量Strokes峰和Anti-Strokes峰的比值来计算材料的温度。[2]国内:黄福敏[3]研究了碳纳米管拉曼光谱的温度效应。根据碳纳米管性质的不同,选取D模,G模,E2g模,D*模信号中的几种,通过测量Strokes峰和Anti-Strokes峰的比值计算温度后平均化。实验结果显示各模分辨计算的温度之间误差小于50K,同时观察到拉曼位移随温度存在线性变化的现象。俞帆[4~6]等对Sr(NO3)2,CCl4,单晶硅等材料的温度进行了测量。测温基于公式:T=h𝑣𝑖k𝐵∙ln[𝐼𝑆𝐼𝐴𝑆∙(𝑣+𝑣𝑖𝑣−𝑣𝑖)4]式中:𝑣,𝑣𝑖分别是激励激光频率和拉曼散射频移。通过筛选合适的测温散射带和测温介质,可以提高测量精度,减少激光致热的影响。20ºC下由测量及激光致热引起的误差小于10K。丁硕[7]等利用散射信号强并且在高温下材料结构稳定的LiNbO3单晶作为测温介质,对电子线路板中元件的温度做了测量。在入射功率为5mW下,假定激光致热效应可忽略,结果显示温度测定值与输入功率有良好的线性关系,表明所取的Raman峰为一级散射。白莹[8]等利用Raman光谱实现了多孔硅温度的测量。测温基于:T=h𝑣𝑖k𝐵∙ln[𝐼𝑆𝐼𝐴𝑆∙(𝑣+𝑣𝑖𝑣−𝑣𝑖)3]选择了多孔硅光学模和横学声模这两种振动模式来计算一定功率下多孔硅样品表面的局域温度,边界条件设置为1%功率下温度为室温,100%功率下光学模和横声学模测定的温度值相同。功率循环实验结果显示在低温段(低功率)下,测量重复性较好而高温段(高功率下)重复性差,归因于量子限域效应在高温下的影响。另一种形式的拉曼强度测温被利用于水温的测量。徐振华[9]基于水的氢键(HB)羟基峰积分与非氢键(NHB)羟基峰积分的比值与温度呈线性关系对微尺度下水温进行了测量。分别通过Walrafen,DubravkoRisovic,SooHoKim等人提出的三种拉曼水温拟合方法进行了标定。结果显示SooHoKim提出的拉曼OH峰展宽分开积算的拟合方法的线性度最好。标定系统如图2。采取了涂覆高反金属层的方法来有效的降低激光致热效应至0.3K,测温精度大幅度提高。0246810350400450500550600650700750温度(K)激光功率(mw)光学模1光学模2横学声模1横学声模2图1两种模式下循环功率测温结果1超级恒温水浴2蠕动泵3透明玻璃管4热电偶5拉曼光谱仪6测点图2拉曼光谱水温标定装置国外:由于Strokes/Anti-strokes比值法测量的过程中由于Anti-strokes峰过于微弱导致的采集时间长,仪器标定困难等局限,MarkR.Abel[10]等同时采用Strokes/Anti-strokes比值法和Strokes峰位变化的方法研究了多晶硅的热力学性能。400ºC下单晶硅用两种测温方法得到的结果误差在0.1ºC以内。而0~500ºC区间内,对多晶硅温度测量的结果表明Strokes/Anti-strokes比值法和Strokes峰位变化给出的测量值差异在激光功率较小的情况下(12mW)小于7%。这一差异来自于Strokes峰位变化的方法没有考虑材料温度变化下应力的修正,但是考虑到Strokes峰位变化检测的快速性,在测温精确度要求不高的场合仍然有实用价值。CraigR.Schardt[11]利用拉曼光谱测量了Ge-Se玻璃在光致结构变化的过程中的温度演变。采用了15%Ge玻璃(中间态)在0.5W/cm2的温度变化为参比做系统响应的修正。选择的测温谱线特征为展宽大,噪声小。结果显示0~40W/cm2的光强变化对测温的影响不大。研究表明样品的光致转化不是由样品加热效应引起而是由光子与材料分子的作用引起,Raman的温度测量是独立的,可信的。表1Ge-Se玻璃在800nm激光不同光强照射下的温度组成(%Ge)α(cm-1)激光强度(W/cm2)温度(K)101.51±0.040.5291±35292±340293±3151.3±0.10.5296±35297±340297±3201.30±0.060.5302±35311±340305±3250.74±0.010.5295±35295±340298±3FuchangChen[12]将Raman强度测温与Brillouin散射测量应力结合实现一种光学时域反射系统(opticaltimedomainreflection,OTDR),达到了5m的空间分辨率,±2.5ºC的测温精度和±100με的应力测量精度。N.C.Dang[13]将非共振飞秒受激Raman(FSRS)应用于凝聚相的温度测量。测温原理是基于受激Raman的Raman增益与Raman减益的比值与温度的关系。具体如下:𝐼𝑙𝑜𝑠𝑠𝐼𝑔𝑎𝑖𝑛=exp{−𝐶𝑙𝑜𝑠𝑠(1−exp[ℎ(𝜔𝑝−𝜔𝑙𝑜𝑠𝑠)𝑘𝑇])}−1exp{𝐶𝑔𝑎𝑖𝑛(1−exp[−ℎ(𝜔𝑝−𝜔𝑔𝑎𝑖𝑛)𝑘𝑇])}−1式中:𝐶𝑔𝑎𝑖𝑛/𝑙𝑜𝑠𝑠=𝐼(𝜔𝐿)𝛿2𝜎𝑅𝛿Ω𝛿Δ𝜎𝑃𝜋𝑐4𝐿𝜇0/(8ℏ𝜔𝑔𝑎𝑖𝑛/𝑙𝑜𝑠𝑠3𝑛𝑃𝑛𝑔𝑎𝑖𝑛/𝑙𝑜𝑠𝑠𝜀0)作者指出自发Raman测温利用的Anti-strokes强度与Strokes强度比值测温的优势在于该比值是温度的单值函数,与体系是否发生物理/化学反应无关,但由于数值太小,不适合破坏性的,微量的动态测量;FSRS测温利用Raman减益与Raman增益比,其与温度,样品分子种类及浓度有关,可以实现在物质浓度发生变化或不发生变化两种情况下测温,同时其显著优势在于信号强度大。A.Ewinger[14]利用水的OH拉曼峰在3250cm-1和3450cm-1处的强度比随温度线性变化实现了微通道内的水温测量。在室温到60ºC测度精度达±1.5ºC,空间分辨率达到15μm×15μm×25μm。ReikoKuriyama[15~16]采用拉曼成像技术进一步研究了水温测量的相关问题。基于原理是水的氢键(HB)羟基峰积分与非氢键(NHB)羟基峰积分的比值与温度呈线性关系。光学实现上直接采用滤波片将HB与NHB的信号分开各自由一块CCD接受信号。在293~343K下测量精度达1.43K,温度分辨率达1.46K,空间分辨率达6.0×6.0μm2。HiroyaTSUJI[17]图3水温测试实验光路Strokes/Anti-strokes强度比值法测定了有机发光二极管(OLED)的温度,简化的测温方程为ln(𝐼𝐴𝑆𝐼𝑆)=−ℎ𝑣𝑖𝑘𝑇+𝐾=−695𝑘+𝐾;K是常数。由于OLED的其他组分的在低波数下的拉曼信号较为微弱,实际的测温区域是483cm-1下拉曼信号强度较大的中间层CuPc。研究中通过热电偶只能测量表面温度因而无法了解该方法的测温精度。2Raman频率测温原理:材料温度的变化会引起结构变化如晶格大小从而改变拉曼信号的频率。对于一般材料,随着温度升高,Raman峰的x坐标会向低波数漂移。Strokes和Anti-strokes峰都会发生偏移,鉴于Strokes信号强度远大于Anti-strokes因此一般被用于测温。Strokes峰偏移与温度的关系如下:ω(T)=𝜔0+𝐴(1+2𝑒ħ𝜔02𝑘𝑇−1)+𝐵(1+3𝑒ħ𝜔03𝑘𝑇−1+3(𝑒ħ𝜔03𝑘𝑇−1)2)式中,𝜔0,A和B和材料有关,ω是Strokes频率。对于一般材料,在较小的温度范围内,频率随温度变化的关系可以看成线性。国内:胡玉东[18]等利用激光拉曼测温技术实现了在333.15K环境温度下单根PAN碳纤维的热导率的测量(不考虑接触热阻)。物理模型如下:PAN纤维搭在带有铜电极通入一定电流的热沉上,加热的激光认为是点光源。系统与环境处于热平衡。选取材料的G峰作为温度测量带,G峰位移与纤维温度成良好的线性关系(R2=0.9994)。总测温误差小于11.2K,热导率误差2.4%。由于该实验系统未计入激光加热和电加热的影响,测量的热导率对使用的环境温度与实际温度有误差(30K)。李满[19]等利用类似的方法实现了碳纳米管纤维导热系数测量及传热研究。建立了考虑对流换热的一维导热模型,同样采用G峰位移与温度关系做标定,结果显示的线性度不及胡玉东等的研究。图4PAN纤维热导率测量物理模型国外:T.Müller[20]等基于OH伸缩振动峰(2900~3700cm-1)的位移与温度之间存在良好的线性关系,实现了甲醇/乙醇液滴温度的测量。测温精度达到±1ºC(~30ºC下)/±3ºC(~70ºC)。限制测温精度进一步提高的原因包括:1)温度标定采用两支独立的热电偶对均匀性的影响;2)采用的偏振光束不能区分OH的两种偏振分量对温度的不同影响。JihyunKim[21]利用mciro-raman实现了AlGaN/GaN基HEMT温度的测量。选择了𝐸22峰作为测温信标,基于公式:ω(T)=𝜔0−𝐴𝑒𝐵(ℎ𝑐𝜔0𝑘𝑇)−1;𝜔0是0K下光子频率;A,B是系数;h,c,k分别是Planck常数,光速,Boltzmann常数。系数A,B与材料的基底,中间层厚度,形核层厚度有关。需要对每一种异质结分别标定。实验测定用的Raman激光功率仅为9mW(激光点尺寸0.8μm),入射光子能量小于GaN的能隙带能够使激光致热最小化。TakuroSUGIYAMA[22]等测量了OLED中NPD层和CuPc层的温度。研究基于所测Raman位移与温度存在υ=AT+B(A,B为常数)的线性关系,很好的解决了NPD无法通过Anti-Strokes/Strokes比值法测量温度的问题。对NPD分别通过两种拉曼测温技术所得结果相当接近。25~191ºCNPD和CuPc的测温误差为±4ºC和±7ºC。ShanshanChen[23]等在真空和气态环境下研究悬浮单层石墨烯中的传热过程中采用了利用材料的2DRaman峰位移随温度线性变化的关系测量了材料的温度。NilsLundt[24]等以TiO2为测温媒介建立了一种高空间分辨的Raman拉曼测温实验方法。实验通过一系列方法将温度变化对应力影响与激光的加热的影响最小化:测试物质无约束可自由延展,降低激光功率使得入射光子能量小于材料的能隙带。测温精度主要受到以下因素的制约:拉曼峰位的不确定性;标定常数的不确定性与材料内部结构的影响。整个测温系统可达的精度为±3~5ºC,与模型拟合的结果有良好的吻
本文标题:拉曼测温技术
链接地址:https://www.777doc.com/doc-2373944 .html