您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 机械设计基础第十四章教学内容扩充
教学内容扩充一、典型案例例题:某一化工设备中的输送装置运转平稳,工作转矩变化很小,以圆锥-圆柱齿轮减速器作为减速装置。试设计该减速器的输出轴。减速器的装置简图如下。输入轴与电动机相联,输出轴通过弹性柱销联轴器与工作机相联,输出轴为单向旋转(从装有联轴器的一端看为顺时针方向)。已知电动机功率P=10kW,转速n1=1450r/min,齿轮机构的参数列于下表:级别z1z2mn(mm)mt(mm)βαn齿宽(mm)高速级20753.51大圆锥齿轮轮毂长L=50低速级239544.0404B1=85,B2=80解:1.求输出轴上的功率P3、转速n3和转矩T3若取每级齿轮传动的效率(包括轴承效率在内)η=0.97,则又于是2.求作用在齿轮上的力因已知低速级大齿轮的分度圆直径为而圆周力Ft,径向力Fr及轴向力Fa的方向如图。3.初步确定轴的最小直径先初步估算轴的最小直径。选取轴的材料为45号钢,调质处理。取A0=112,于是得输出轴的最小直径显然是安装联轴器处轴的直径dⅠ-Ⅱ。为了使所选的轴直径dⅠ-Ⅱ与联轴器的孔径相适应,故需同时选取联轴器型号。联轴器的计算转矩Tca=KAT3,考虑到转矩很小,故取KA=1.3,则:Tca=KAT3=1.3×960000N·mm=1248000N·mm按照计算转矩Tca应小于联轴器公称转矩的条件,查标准GB5014-85或手册,选用HL4型弹性柱销联轴器,其公称转矩为1250000N·mm。半联轴器Ⅰ的孔径dⅠ=55mm;故取dⅠ-Ⅱ=55mm;半联轴器长度L=112mm,半联轴器与轴配合的毂孔长度L1=84mm。4.轴的结构设计1)拟定轴上零件的装配方案本题的装配方案已在前面分析比较,现选用如图所示的第一种装配方案。2)根据轴向定位的要求确定轴的各段直径和长度⑴为了满足半联轴器的轴向定位要求,Ⅰ-Ⅱ轴端右端需制出一轴肩,故取Ⅱ-Ⅲ段的直径dII-III=62mm;左端用轴端挡圈定位,按轴端直径取挡圈直径D=65mm。半联轴器与轴配合的毂孔长度L1=84mm,为了保证轴端挡圈只压在半联轴器上而不压在轴的端面上,故Ⅰ-Ⅱ段的长度应比L1略短一些,现取lI-II=82mm。⑵初步选择滚动轴承。因轴承同时受有径向力和轴向力的作用。故选用单列圆锥滚子轴承。参照工作要求并根据dI-II=62mm,由轴承产品目录中选取0基本游隙组、标准精度级的单列圆锥滚子轴承30313,其尺寸为d×D×T=65×140×36,故dⅢ-Ⅳ=65mm;而lⅦ-Ⅷ=36mm。右端滚动轴承采用轴肩进行定位。由手册上查到30313型轴承的定位轴肩高度h=6mm,因此,取dⅥ-Ⅶ=77mm。⑶取安装齿轮处的轴段Ⅳ-Ⅴ的直径dⅣ-Ⅴ=70mm;齿轮的左端与左轴承之间采用套筒定位。已知齿轮轮毂的宽度为80mm,为了使套筒端面可靠地压紧齿轮,此轴段应略短于轮毂宽度,故取lⅣ-Ⅴ=76mm。齿轮的右端采用轴肩定位,轴肩高度h0.07d,取h=6mm,则轴环处的直径dⅤ-Ⅵ=82mm。轴环宽度b≥1.4h,取lⅤ-Ⅵ=12mm。⑷轴承端盖的总宽度为20mm(由减速器及轴承端盖的结构设计而定)。根据轴承端盖的装拆及便于对轴承添加润滑脂的要求,取端盖的外端面与半联轴器右端面间的距离l=30mm,故取lII-III=50mm。⑸取齿轮距箱体内壁之距离a=16mm,圆锥齿轮与圆柱齿轮之间的距离c=20mm。考虑到箱体的铸造误差,在确定滚动轴承位置时,应距箱体内壁一段距离s,取s=8mm。已知滚动轴承宽度T=36mm,大圆锥齿轮轮毂长L=50mm,则lIII-IV=T+s+a+(80-76)=36+8+16+4mm=64mmlVI-VII=L+c+a+s-lV-VI=50+20+16+8-12mm=82mm至此,已初步确定了轴的各段直径和长度。3)轴上零件的周向定位齿轮、半联轴器与轴的周向定位均采用平键联接。按dIV-V由手册查得平键截面b×h=20×12(GB1095-79),键槽用键槽铣刀加工,长为63mm(标准键长见GB1096-79),同时为了保证齿轮轮毂与轴的配合为H7/n6;同样,半联轴器与轴的联接,选用平键为16×10×70,半联轴器与轴的配合为H7/k6。滚动轴承与轴的周向定位是借过渡配合来保证的,此处选轴的直径尺寸公差为m6。4)确定轴上圆角和倒角尺寸。取轴端倒角为2×45°,各轴肩处的圆角半径见图。5.求轴上的载荷首先根据轴的结构图,作出轴的计算简图。在确定轴承的支点位置时,应从手册中查取图示中的a值。对于30313型圆锥滚子轴承。由手册中查得a=29mm。因此,作为简支梁的轴的支承跨距L2+L3=71+141=212mm。根据轴的计算简图作出轴的弯矩、扭矩图和计算弯矩图。从轴的结构图和计算弯矩图中可以看出截面C处的计算弯矩最大,是轴的危险截面。现将计算出的截面C处的MH、MV、M及Mca的值列于表中。载荷水平面H垂直面V支反力RFNH1=3327N,FNH2=1675NFNV1=1869N,FNV2=-30N弯矩MMH=236217N·mmMV1=132699N·mm,MV2=-4140N·mm总弯矩扭矩TT3=960000N·mm计算弯矩Mca(其中的0.6为所取的a值)6.按弯扭合成应力校核轴的强度进行校核时,通常只校核轴上承受最大计算弯矩的截面(即危险截面C)的强度。则由公式及上表中数值可得前已选定轴的材料为45号钢,由轴常用材料性能表查得[σ-1]=60MPa。因此σca[σ-1],故安全。7.精确校核轴的疲劳强度1)判断危险截面截面A,Ⅱ,Ⅲ,B只受扭矩作用,虽然键槽、轴肩及过渡配合所引起的应力集中均将削弱轴的疲劳强度,但由于轴的最小直径是按扭转强度较为宽裕地确定的,所以截面A,Ⅱ,Ⅲ,B均无需校核。从应力集中对轴的疲劳强度的影响来看,截面Ⅳ和Ⅴ处过盈配合引起的应力集中最严重;从受载的情况来看,截面C上Mca1最大。截面Ⅴ的应力集中的影响和截面Ⅳ的相近,但截面Ⅴ不受扭矩作用,同时轴径也较大,故不必作强度校核。截面C上虽然Mca1最大,但应力集中不大(过盈配合及键槽引起的应力集中均在两端),而且这里轴的直径最大,故截面C也不必校核。截面Ⅵ和Ⅶ显然更不必校核。键槽的应力集中系数比过盈配合的小,因而该轴只需校核截面Ⅳ左右两侧即可。2)截面Ⅳ左侧抗弯截面系数抗扭截面系数截面Ⅳ左侧的弯矩M为截面Ⅳ上的扭矩T3为T3=960000N·mm截面上的弯曲应力截面上的扭转切应力轴的材料为45号钢,调质处理,由轴常用材料性能表查得σB=640MPa,σ-1=275MPa,τ-1=155MPa截面上由于轴肩而形成的理论应力集中系数ασ及ατ按手册查取。因,,经插值后可查得,又由手册可得轴的材料的敏性系数为,故有效应力集中系数为=1.82由手册得尺寸系数;扭转尺寸系数。轴按磨削加工,由手册得表面质量系数为轴未经表面强化处理,即,则按手册得综合系数为又由手册得材料特性系数ψσ=0.1~0.2,取ψσ=0.1ψτ=0.05~0.1,取ψτ=0.05于是,计算安全系数Sca值,按公式则得故可知其安全。3)截面Ⅳ右侧抗弯截面系数W按表中的公式计算,抗扭截面系数WT为弯矩M及弯曲应力为扭矩T3及扭转切应力为T3=960000N·mm过盈配合处的kσ/εσ值,由手册用插入法求出,并取kτ/ετ=0.8kσ/εσ,于是得,轴按磨削加工,由手册得表面质量系数为故得综合系数为所以轴在截面Ⅳ右侧的安全系数为故该轴在截面Ⅳ右侧的强度也是足够的。本题因无大的瞬时过载及严重的应力循环不对称性,故可略去静强度校核。至此,轴的设计计算即告结束二、推荐阅读[1]杨黎明杨志勤机械零部件选用与设计:国防工业出版社[2]轴系零部件设计实例精解于惠力李广慧,北京:机械工业出版社三、媒体链接
本文标题:机械设计基础第十四章教学内容扩充
链接地址:https://www.777doc.com/doc-2380802 .html