您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 数值分析实验报告-插值逼近
数值分析实验报告1/10实验报告:函数逼近&插值多项式补充问题1:对于给函数21()1+25fxx,取点21cos22kkxn,k取0,1,…,n。n取10或20。试画出拟合曲线并打印出方程,与第二章计算实习题2的结果进行比较。问题2:对于给函数21()1+25fxx在区间[-1,1]上取xi=-1+0.2i(i=0,1,2,…,10),试求3次曲线拟合,试画出拟合曲线并打印出方程,与第二章计算实习题2的结果进行比较。实验目的:通过编程实现牛顿插值方法和函数逼近,加深对多项式插值的理解。应用所编程序解决实际算例。实验要求:1.认真分析问题,深刻理解相关理论知识并能熟练应用;2.编写相关程序并进行实验;3.调试程序,得到最终结果;4.分析解释实验结果;5.按照要求完成实验报告。实验原理:详见《数值分析第5版》第二章、第三章相关内容。实验内容:(1)问题1:这里我们可以沿用实验报告一的代码,对其进行少量修改即可。当n=10时,代码为:clearallclck=0:10;n=length(k);x1=cos((2*k+1)/2/n*pi);y1=1./(1+25.*x1.^2);f=y1(:);forj=2:nfori=n:-1:jf(i)=(f(i)-f(i-1))/(x1(i)-x1(i-j+1));endendsymsFxp;F(1)=1;p(1)=y1(1);fori=2:nF(i)=F(i-1)*(x-x1(i-1));数值分析实验报告2/10p(i)=f(i)*F(i);endsymsPP=sum(p);P10=vpa(expand(P),5);x0=-1:0.001:1;y0=subs(P,x,x0);y2=subs(1/(1+25*x^2),x,x0);plot(x0,y0,x0,y2)gridonxlabel('x')ylabel('y')由此我们可以得到P10(x)=-46.633*x^10+3.0962e-14*x^9+130.11*x^8-7.2714e-14*x^7-133.44*x^6+7.1777e-14*x^5+61.443*x^4-1.5805e-14*x^3-12.477*x^2-1.6214e-16*x+1.0并可以得到牛顿插值多项式在[-1,1]上的图形,并和原函数进行对比,得Fig.1。Fig.1牛顿插值多项式(n=10)函数和原函数图形当n=20,将上述代码中的“k=0:10;”改为“k=0:20;”即可。由此我们可以得到P20(x)=6466.6*x^20+8.0207e-13*x^19-34208.0*x^18-3.5038e-12*x^17+77754.0*x^16-99300.0*x^14+3.7253e-9*x^13+78236.0*x^12-39333.0*x^10+12636.0*x^8-4.6566e-10*x^7-2537.3*x^6+306.63*x^4-21.762*x^2+1.0并可以得到牛顿插值多项式在[-1,1]上的图形,并和原函数进行对比,得Fig.2。-1-0.8-0.6-0.4-0.200.20.40.60.81-0.200.20.40.60.811.2xy数值分析实验报告3/10Fig.2牛顿插值多项式(n=20)函数和原函数图形回顾一下实验一的结果(见Fig.3),我们不难发现,仅仅是改变了x的取值,结果发生了很大的变化。实验一中,插值多项式与原函数产生了很大的偏差,并且随着分的段数的增加,其误差不断变大,但是在本次实验中,我们不难发现,虽然多项式依旧存在震荡现象,但是误差小了很多,而且随着分的段数的增加,插值多项式曲线与原函数曲线已经十分接近了。Fig.3实验一结果-1-0.8-0.6-0.4-0.200.20.40.60.8100.10.20.30.40.50.60.70.80.91xy数值分析实验报告4/10这个例子说明:采用切比雪夫节点替代等距节点可以消除龙格现象。(2)问题2:分析问题,发现在这个问题中,我们已经知道了原函数,同时它也告诉我们所需取的11个点的值,所以这里可以用两种方法进行函数逼近得到拟合曲线。首先采用最小二乘法来考虑这个问题,编写代码如下(这里没有直接调用polyfit函数):clearallclcn=3;x1=-1:0.2:1;y1=1./(1+25.*x1.^2);symsSGdax;fori=1:n+1;forj=1:n+1;G(i,j)=sum(x1.^(i+j-2));endendfori=1:n+1;d(i)=sum(x1.^(i-1).*y1);enda=G^-1*d';fori=1:n+1X(i)=x^(i-1);endS=vpa(X*a,5)x0=-1:0.001:1;y0=subs(S,x,x0);y2=subs(1/(1+25*x^2),x,x0);plot(x0,y0,x0,y2)gridonxlabel('x')ylabel('y')我们可以得到一个三次多项式:S3=1.1665e-16*x^3-0.57518*x^2-9.4553e-17*x+0.48412。同时我们也可以得到它与原函数的图形,如图Fig.4。数值分析实验报告5/10Fig.4最小二乘法n=3的结果我们发现得到的结果和原函数产生了巨大的误差。首先观察得到的多项式,我们发现它的3次项系数非常小,原因是原函数是一个偶函数,这将导致奇次项系数基本为0。这里我们调整n,对结果进行观察,取n=4,6,8,10,20。我们可以得到Fig.5-Fig.9。S4=1.4852*x^4+1.3703e-16*x^3-2.0604*x^2-1.1769e-16*x+0.65522S6=-4.633*x^6+4.0789e-14*x^5+8.4769*x^4-5.28e-14*x^3-4.5969*x^2+1.3229e-14*x+0.78461S8=20.466*x^8-3.8972e-12*x^7-43.601*x^6+6.9014e-12*x^5+30.817*x^4-3.4363e-12*x^3-8.5318*x^2+4.2796e-13*x+0.88802S10=-220.94*x^10-5.1978e-9*x^9+494.91*x^8+1.0649e-8*x^7-381.43*x^6-6.9693e-9*x^5+123.36*x^4+1.6139e-9*x^3-16.855*x^2-9.6021e-11*x+1.0S20=-318.82*x^20+74.132*x^19+43.205*x^18-83.871*x^17+91.867*x^16+68.562*x^15+29.364*x^14-56.393*x^13+260.42*x^12-32.957*x^11+79.822*x^10+1.8279*x^9-139.85*x^8+49.564*x^7-121.95*x^6-23.918*x^5+90.922*x^4+3.1437*x^3-15.933*x^2-0.090653*x+1.0Fig.5最小二乘法n=4的结果-1-0.8-0.6-0.4-0.200.20.40.60.81-0.200.20.40.60.811.2xy-1-0.8-0.6-0.4-0.200.20.40.60.81-0.200.20.40.60.811.2xy数值分析实验报告6/10Fig.6最小二乘法n=6的结果Fig.7最小二乘法n=8的结果Fig.8最小二乘法n=10的结果-1-0.8-0.6-0.4-0.200.20.40.60.8100.10.20.30.40.50.60.70.80.91xy-1-0.8-0.6-0.4-0.200.20.40.60.81-0.200.20.40.60.811.2xy-1-0.8-0.6-0.4-0.200.20.40.60.81-0.500.511.52xy数值分析实验报告7/10Fig.9最小二乘法n=20的结果不难发现,拟合结果并不理想,当n=8时与原函数较为接近,而当n取其他值时,都有着比较大的误差,说明采用最小二乘法考虑这个问题并不是一个十分好的方法,对yi进行适当变形可能可以得到更好的结果。同时,由于知道f(x),这道题我们也可以采用最佳平方逼近的方法,编写代码如下:clearallclcsymsSHadx;n=3;fori=1:n+1d(i)=int(x^(i-1)/(1+25*x^2),x,-1,1);endfori=1:n+1forj=1:n+1H(i,j)=int(x^(i+j-2),x,-1,1);endenda=H^-1*d';fori=1:n+1X(i)=x^(i-1);endS=vpa(X*a,5)x0=-1:0.001:1;y0=subs(S,x,x0);y2=subs(1/(1+25*x^2),x,x0);plot(x0,y0,x0,y2)gridonxlabel('x')ylabel('y')由此我们可以得到一个三次多项式,(事实上这是一个二次多项式):-1-0.8-0.6-0.4-0.200.20.40.60.81-5051015202530xy数值分析实验报告8/10S3=0.50923-0.70366*x^2,同时我们也可以得到该多项式与原函数的图像,见Fig.10。Fig.10最佳平方逼近n=3的结果不然发现采用这种方法有着和最小二乘法相同的问题,同样我们这里也对n取不同的值进行观察,取n=4,6,8,10,20。我们可以得到Fig.11-Fig.15。S4=1.8689*x^4-2.3055*x^2+0.66942S6=-4.9969*x^6+8.6828*x^4-4.5768*x^2+0.77758S8=13.392*x^8-29.995*x^6+23.105*x^4-7.199*x^2+0.85042S10=-35.931*x^10+98.491*x^8-100.08*x^6+46.465*x^4-9.8945*x^2+0.89942S20=5023.5*x^20-26343.0*x^18+59469.0*x^16-75642.0*x^14+59603.0*x^12-30157.0*x^10+9844.2*x^8-2038.8*x^6+259.82*x^4-19.945*x^2+0.9862Fig.11最佳平方逼近n=4的结果-1-0.8-0.6-0.4-0.200.20.40.60.81-0.200.20.40.60.811.2xy-1-0.8-0.6-0.4-0.200.20.40.60.81-0.200.20.40.60.811.2xy数值分析实验报告9/10Fig.12最佳平方逼近n=6的结果Fig.13最佳平方逼近n=8的结果Fig.14最佳平方逼近n=10的结果-1-0.8-0.6-0.4-0.200.20.40.60.81-0.200.20.40.60.811.2xy-1-0.8-0.6-0.4-0.200.20.40.60.81-0.200.20.40.60.811.2xy-1-0.8-0.6-0.4-0.200.20.40.60.81-0.200.20.40.60.811.2xy数值分析实验报告10/10Fig.15最佳平方逼近n=20的结果显然,当知道原函数的情况下,当n取较大值时,多项式结果可以很好的逼近原函数。实验感想:通过本次实验,我对插值函数和函数逼近有了更加清晰的认识。-1-0.8-0.6-0.4-0.200.20.40.60.8100.10.20.30.40.50.60.70.80.91xy
本文标题:数值分析实验报告-插值逼近
链接地址:https://www.777doc.com/doc-2387477 .html