您好,欢迎访问三七文档
数列练习题1.(裂项)nS为数列{}na的前n项和.已知20,243nnnnaaaS,(Ⅰ)求{}na的通项公式:(Ⅱ)设11nnnbaa,求数列{}nb的前n项和。2.(错位相减)已知{na}是等差数列,其前n项和为nS,{nb}是等比数列,且1a=1=2b,44+=27ab,44=10Sb.(Ⅰ)求数列{na}与{nb}的通项公式;(Ⅱ)记1121=+++nnnnTababab,+nN,证明+12=2+10nnnTab+()nN.3.(裂项)在数1和100之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积记作nT,再令nnTalg,n≥1.(Ⅰ)求数列na的通项公式;(Ⅱ)设1tantannnnaab,求数列nb的前n项和nS.4.(绝对值型)已知等差数列{}na的公差为2,前n项和为nS,且124,,SSS成等比数列.(Ⅰ)求数列{}na的通项公式;(Ⅱ)令114(1)nnnnnbaa,求数列{}nb的前n项和nT.参考答案1.解:(Ⅰ)由2243nnnaaS,可知2111243nnnaaS可得221112()4nnnnnaaaaa,即2211112()()()nnnnnnnnaaaaaaaa由于0na,可得12nnaa又2111243aaa,解得11a(舍去),13a所以{}na是首项为3,公差为2的等差数列,通项公式为21nan(Ⅱ)由21nan可知111111()(21)(23)22123nnnbaannnn设数列{}nb的前n项和为nT,则12...nnTbbb1111111[()()...()]235572123nn3(23)nn2.(2012天津理科)解:(1)设等差数列{an}的公差为d,等比数列{bn}的公比为q.由a1=b1=2,得a4=2+3d,b4=2q3,S4=8+6d.由条件,得方程组3323227,86210,dqdq解得3,2.dq所以an=3n-1,bn=2n,n∈N*.(2)证明:由(1)得Tn=2an+22an-1+23an-2+…+2na1,①2Tn=22an+23an-1+…+2na2+2n+1a1.②由②-①,得Tn=-2(3n-1)+3×22+3×23+…+3×2n+2n+2=112(12)12n+2n+2-6n+2=10×2n-6n-10.而-2an+10bn-12=-2(3n-1)+10×2n-12=10×2n-6n-10,故Tn+12=-2an+10bn,n∈N*.3.(18)本题考查等比和等差数列,对数和指数的运算,两角差的正切公式等基本知识,考查灵活运用基本知识解决问题的能力,创新思维能力和运算求解能力。解:(Ⅰ)设221,,,nttt构成等比数列,其中100,121ntt,则2121nnnttttT①1212ttttTnnn②①×②并利用)21(,102213nittttnini,得)2(2210nnT.1,2lgnnTann(Ⅱ)由题意和(Ⅰ)中计算结果,知1),3tan()2tan(nnnbn另一方面,利用kkkkkktan)1tan(1tan)1tan())1tan((1tan得11tantan)1tan(tan)1tan(kkkk所以nnkkkkbSnininiin1tan3tan)3tan()11tantan)1tan((tan)1tan(232314.解:(Ⅰ)因为1121121,22222SaSaa41143424122Saa由题意得2111(22)(412)aaa解得11a所以21nan(Ⅱ)11144(1)(1)(21)21nnnnnnnbaann111(1)2121nnn当n为偶数时,11111111...33523212121nTnnnn1121n221nn当n为奇数时,11111111...33523212121nTnnnn1121n2221nn综上所述,22,21,nnnnTn为奇数2n为偶数2n+1
本文标题:数列错位相减
链接地址:https://www.777doc.com/doc-2387610 .html