您好,欢迎访问三七文档
数字化设计与制造一、背景在计算机技术出现之前,机械产品的设计与加工的方式一直都是图纸设计和手工加工的方式,这种传统的产品设计与制造方式,这使得产品在质量上完全依赖于产品设计人员与加工人员的专业技术水平,而数量上则完全依赖于产品加工人员的熟练程度,而随着工业社会的不断发展,人们对机械产品的质量提出了更高要求,同时数量上的需求也不断增长。为了适应社会对机械产品在质量与数量上的需求,同时也为了能进一步降低机械产品的生产成本,人们在努力寻求一种全新的机械产品设计与加工方式,而二十世纪四五十年代以来计算机技术的出现及其发展,特别是计算机图形学的出现,让人们看到了变革传统机械产品设计与生产方式的曙光。于是,数字化设计与制作方式应运而生,人们逐步将机械产品的设计与加工任务交给计算机来做,这一方面使得机械产品的设计周期大大缩短,另一方面也使得产品的质量与数量基本摆脱了对于设计与加工人员的依赖,从而大大提升了产品的质量,降低了产品的生产成本,同时也使得产品更加适合批量化生产。二、概念数字化设计:就是通过数字化的手段来改造传统的产品设计方法,旨在建立一套基于计算机技术和网络信息技术,支持产品开发与生产全过程的设计方法。数字化设计的内涵:支持产品开发全过程、支持产品创新设计、支持产品相关数据管理、支持产品开发流程的控制与优化等。其基础是产品建模,主体是优化设计,核心是数据管理。数字化制造:是指对制造过程进行数字化描述而在数字空间中完成产品的制造过程。数字化制造是计算机数字技术、网络信息技术与制造技术不断融合、发展和应用的结果,也是制造企业、制造系统和生产系统不断实现数字化的必然。计算机仿真技术:是以相似原理、信息技术、系统技术及相应领域的专业技术为基础,以计算机和各种物理效应设备为工具,利用系统模型对实际的或设想的系统进行试验研究的一门综合性技术。该技术通过建立某一过程或某一系统的模型来描述该过程或该系统,然后用一系列有目的、有条件的计算机仿真实验来刻画系统的特征,从而得出数量指标,为决策者提供关于这一过程或系统的定量分析结果,作为决策的理论依据。计算机仿真技术的基本步骤为:系统分析—把被仿真系统的内容表述清楚模型设计—选择合适的仿真方法,设计系统的计算机模型模型运行—在计算机上执行模型模型分析—分析执行输出三、工具1、CAD---计算机辅助设计CAD在早期是英文ComputerAidedDrawing(计算机辅助绘图)的缩写,随着计算机软、硬件技术的发展,人们逐步的认识到单纯使用计算机绘图还不能称之为计算机辅助设计。真正的设计是整个产品的设计,它包括产品的构思、功能设计、结构分析、加工制造等,二维工程图设计只是产品设计中的一小部分。于是CAD的缩写由ComputerAidedDrawing改为ComputerAidedDesign,CAD也不再仅仅是辅助绘图,而是协助创建、修改、分析和优化的设计技术。2、CAE---计算机辅助工程分析CAE(ComputerAidedEngineering)通常指有限元分析和机构的运动学及动力学分析。有限元分析可完成力学分析(线性.非线性.静态.动态);场分析(热场、电场、磁场等);频率响应和结构优化等。机构分析能完成机构内零部件的位移、速度、加速度和力的计算,机构的运动模拟及机构参数的优化。3、CAM---计算机辅助制造CAM(ComputerAidedManufacture)是计算机辅助制造的缩写,能根据CAD模型自动生成零件加工的数控代码,对加工过程进行动态模拟、同时完成在实现加工时的干涉和碰撞检查。CAM系统和数字化装备结合可以实现无纸化生产,为CIMS(计算机集成制造系统)的实现奠定基础。CAM中最核心的技术是数控技术。通常零件结构采用空间直角坐标系中的点、线、面的数字量表示,CAM就是用数控机床按数字量控制刀具运动,完成零件加工。4、CAPP---计算机辅助工艺规划世界上最早研究CAPP的国家是挪威,始于1966年,并于1969年正式推出世界上第一个CAPP系统AutoPros,并于1973年正式推出商品化AutoPros系统。美国是60年代末开始研究CAPP的,并于1976年由CAM-I公司推出颇具影响力的CAP-I'sAutomatedProcessPlanning系统。5、PDM---产品数据库管理随着CAD技术的推广,原有技术管理系统难以满足要求。在采用计算机辅助设计以前,产品的设计、工艺和经营管理过程中涉及到的各类图纸、技术文档、工艺卡片、生产单、更改单、采购单、成本核算单和材料清单等均由人工编写、审批、归类、分发和存档,所有的资料均通过技术资料室进行统一管理。自从采用计算机技术之后,上述与产品有关的信息都变成了电子信息。简单地采用计算机技术模拟原来人工管理资料的方法往往不能从根本上解决先进的设计制造手段与落后的资料管理之间的矛盾。要解决这个矛盾,必须采用PDM技术。PDM(产品数据管理)是从管理CAD/CAM系统的高度上诞生的先进的计算机管理系统软件。它管理的是产品整个生命周期内的全部数据。工程技术人员根据市场需求设计的产品图纸和编写的工艺文档仅仅是产品数据中的一部分。PDM系统除了要管理上述数据外,还要对相关的市场需求、分析、设计与制造过程中的全部更改历程、用户使用说明及售后服务等数据进行统一有效的管理。PDM关注的是研发设计环节。6、ERP---企业资源计划企业资源计划系统,是指建立在信息技术基础上,对企业的所有资源(物流、资金流、信息流、人力资源)进行整合集成管理,采用信息化手段实现企业供销链管理,从而达到对供应链上的每一环节实现科学管理。ERP系统集中信息技术与先进的管理思想于一身,成为现代企业的运行模式,反映时代对企业合理调配资源,最大化地创造社会财富的要求,成为企业在信息时代生存、发展的基石。在企业中,一般的管理主要包括三方面的内容:生产控制(计划、制造)、物流管理(分销、采购、库存管理)和财务管理(会计核算、财务管理)。7、RE---逆向工程技术对实物作快速测量,并反求为可被3D软件接受的数据模型,快速创建数字化模型(CAD)。进而对样品进而作修改和详细设计,达到快速开发新产品的目的。属于数字化测量领域。8、RP---快速成型快速成型(RapidPrototyping)技术是90年代发展起来的,被认为是近年来制造技术领域的一次重大突破,其对制造业的影响可与数控技术的出现相媲美。RP系统综合了机械工程、CAD、数控技术,激光技术及材料科学技术,可以自动、直接、快速、精确地将设计思想物化为具有一定功能的原型或直接制造零件,从而可以对产品设计进行快速评价、修改及功能试验,有效地缩短了产品的研发周期。计算机仿真软件:MATLAB、ANSYS、COSMOS等。四、数字化设计与制造的发展历程1、CAx工具应用阶段自上个世纪50年代起,各种CAx工具(CAD/CAE/CAM/CAT等)开始出现并逐步得到应用,标志着数字化设计的开始。2、并行工程应用阶段并行工程是集成地、并行地设计产品及其相关过程(包括制造过程和支持过程)的系统方法。这种方法要求产品开发人员在一开始就考虑产品整个生命周期中从概念形成到产品报废的所有因素,包括质量、成本、进度计划和用户要求。并行工程的目标提高质量、降低成本、缩短产品开发周期和产品上市时间。并行工程的具体做法:1)在产品开发初期,组织多种职能协同工作的项目组,使有关人员从一开始就获得对新产品需求的要求和信息,积极研究涉及本部门的工作业务,并将所需要求提供给设计人员,使许多问题在开发早期就得到解决,从而保证了设计的质量,避免了大量的返工浪费.2)在产品的设计开发期间,将概念设计、结构设计、工艺设计、最终需求等结合起来,保证以最快的速度按要求的质量完成。3)各项工作由与此相关的项目小组完成。进程中小组成员各自安排自身的工作,但可以定期或随时反馈信息并对出现的问题协调解决。4)依据适当的信息系统工具,反馈与协调整个项目的进行。利用现代CIM技术,在产品的研制与开发期间,辅助项目进程的并行化。并行工程于20世纪80年代提出,具体体现在PDM(产品数据管理)技术及DFx(如DFM、DFA等)技术在产品设计阶段的应用。它是在CAD、CAM、CAPP等技术的支持下,将原来分别依次进行的工作在时间和空间上交叉、重叠,利用原有技术,吸收计算机技术、信息技术的成果,成为产品数字化设计的重要手段和先进制造技术的基础。3、虚拟样机技术应用阶段虚拟样机技术的定义:虚拟样机就是用来代替物理产品的计算机数字模型,它可以像真实的物理模型一样,用来对所关心的产品的全寿命周期,如设计、制造、服务、循环利用等,进行展示、分析和测试。这种构造和使用虚拟样机的技术就叫虚拟样机技术。虚拟样机技术的组成:三维实体模型、个人—产品交互模型、与产品测试有关的可视化模型虚拟样机技术的优点:1)减少了设计费用2)可以辅助物理样机进行设计验证和测试3)可以减少产品开发过程中所需的时间,使产品尽快上市4)可以在相同的时间内“试验”更多的设计方案,这是物理样机无法比拟的5)可以减少产品开发后期的设计更改,进而使得整个产品的开发周期最小化6)与常规的仿真相比,它涉及的设计领域广,考虑也比较周全,因而可以提高产品的质量。7)由于虚拟样机技术支持并行设计,使得设计小组之间的沟通变得便捷。四、优点1、数字化设计的优点:1)减少设计过程中实物模型的制造。传统设计在产品研制中需经过反复多次的“样机生产-样机测试-修改设计”的过程,这不仅耗费物力、财力,还使得产品研制周期延长。数字化设计则在制造物理样机之前,针对数字化模型进行仿真分析与测试,可排除某些设计不合理性;2)易于实现设计的并行化。相对与传统设计过程的串行化,数字化设计可以让一项设计工作由多个设计队伍在不同的地域分头并行设计、共同装配,这在提高产品设计质量与速度方面具有重要的意义。2、数字化制造的优点:可精确地预测和评价产品的可制造性、加工时间、制造周期、生产成本、零件的加工质量、产品质量和制造系统运行性能零件和产品的可制造性分析、生产规划与工艺规划的评价与确认、敏捷企业和分散化网络生产系统中合作伙伴的选择、生产过程和制造系统设计与优化网上制造资源的查询与优选低成本的人员培训工具。3、计算机仿真的优点:1)仿真实验可以反复进行,改变系统的结构和系数都比较容易,实验时间段,代价小;2)可以在真实系统建立起来之前,预测其行为效果,从而可以从不同结构或不同参数的模型的结果比较之中,选择最佳模型;3)对于缺少解析表示的系统,或者虽有解析表示但无法精确求解的系统,可以通过仿真获得系统运行的数值结果;4)对于随机性系统,可以通过大量重复试验,获得在统计意义上某些特性指标。5)对于机械产品的研制来说,计算机仿真能够提高产品质量;缩短产品开发周期;降低产品开发成本;完成复杂产品的操作和使用训练。五、国内数字化设计与制造的现状:“十一五”期间,我国政府组织实施了制造业信息化工程专项,推动设计数字化、制造装备数字化、生产过程数字化、管理数字化和企业数字化等方面的发展,数字化制造技术在我国已经取得大量应用:一是CAD/CAPP/CAE/CAM的推广应用,改变了传统的设计生产、制作模式,已经成为我国现代制造业发展的重要技术特征;二是MRP/ERP的推广应用;三是CIMS的推广应用;四是网络建设方面,近年来互联网技术的飞速发展,企业网络迅猛发展。目前,数字化制造技术正在我国深入发展,呈现以下趋势:一是正由2D向3D转变,形成以基于模型的定义/基于模型的作业指导书为核心的设计与制造;二是并行和协同,通过产品、工艺过程和生产资源的建模仿真及集成优化技术,提高多学科的设计与制造的协同性和并行性,实现产品和工艺设计结果的早期验证;三是数字化装配与维修;四是数字化车间与数字化工厂,这是数字化制造技术在车间和和工厂集成应用和高效运营的全新生产模式,为高效物流实施以及精益生产、可重构制造、元化制造等先进制造模式提供辅助工具;五是工业互联网,由机器、设备组、设施和系统网络组成,能够在更深的层面将连接
本文标题:数字化设计与制造
链接地址:https://www.777doc.com/doc-2387876 .html