您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 新课程基础训练题必修5第一章解三角形综合训练B组及答案
努力成就明天高三加油(数学5必修)第一章解三角形[综合训练B组]一、选择题1.在△ABC中,::1:2:3ABC,则::abc等于()A.1:2:3B.3:2:1C.1:3:2D.2:3:12.在△ABC中,若角B为钝角,则sinsinBA的值()A.大于零B.小于零C.等于零D.不能确定3.在△ABC中,若BA2,则a等于()A.Absin2B.Abcos2C.Bbsin2D.Bbcos24.在△ABC中,若2lgsinlgcoslgsinlgCBA,则△ABC的形状是()A.直角三角形B.等边三角形C.不能确定D.等腰三角形5.在△ABC中,若,3))((bcacbcba则A()A.090B.060C.0135D.01506.在△ABC中,若1413cos,8,7Cba,则最大角的余弦是()A.51B.61C.71D.817.在△ABC中,若tan2ABabab,则△ABC的形状是()A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形二、填空题1.若在△ABC中,060,1,3,ABCAbS则CBAcbasinsinsin=_______.2.若,AB是锐角三角形的两内角,则BAtantan_____1(填或).3.在△ABC中,若CBCBAtantan,coscos2sin则_________.4.在△ABC中,若,12,10,9cba则△ABC的形状是_________.5.在△ABC中,若Acba则226,2,3_________.6.在锐角△ABC中,若2,3ab,则边长c的取值范围是_________.努力成就明天高三加油三、解答题1.在△ABC中,0120,,21,3ABCAcbaS,求cb,.2.在锐角△ABC中,求证:1tantantanCBA.3.在△ABC中,求证:2cos2cos2cos4sinsinsinCBACBA.4.在△ABC中,若0120BA,则求证:1cabcba.5.在△ABC中,若223coscos222CAbac,则求证:2acb努力成就明天高三加油(数学5必修)第一章解三角形[综合训练B组]参考答案一、选择题1.C132,,,::sin:sin:sin::1:3:2632222ABCabcABC2.A,ABAB,且,AB都是锐角,sinsin()sinABB3.Dsinsin22sincos,2cosABBBabB4.Dsinsinlglg2,2,sin2cossincossincossinAAABCBCBCsin()2cossin,sincoscossin0,BCBCBCBCsin()0,BCBC,等腰三角形5.B22()()3,()3,abcbcabcbcabc222222013,cos,6022bcabcabcAAbc6.C2222cos9,3cababCc,B为最大角,1cos7B7.D2cossinsinsin22tan2sinsin2sincos22ABABABabABABABabAB,tan2tan,tan022tan2ABABABAB,或tan12AB所以AB或2AB二、填空题1.33922113sin3,4,13,13222ABCSbcAccaa13239sinsinsinsin332abcaABCA努力成就明天高三加油2.,22ABAB,即sin()2tantan()2cos()2BABBcos1sintanBBB,1tan,tantan1tanAABB1.2sinsintantancoscosBCBCBCsincoscossinsin()2sin1coscossinsin2BCBCBCABCAA2.锐角三角形C为最大角,cos0,CC为锐角5.060222843233114cos226222(31)222bcaAbc6.(5,13)222222222222213,49,513,51394abccacbccccbac三、解答题1.解:1sin3,4,2ABCSbcAbc2222cos,5abcbcAbc,而cb所以4,1cb2.证明:∵△ABC是锐角三角形,∴,2AB即022AB∴sinsin()2AB,即sincosAB;同理sincosBC;sincosCA∴sinsinsinsinsinsincoscoscos,1coscoscosABCABCABCABC∴1tantantanCBA3.证明:∵sinsinsin2sincossin()22ABABABCAB2sincos2sincos2222ABABABAB2sin(coscos)222ABABAB努力成就明天高三加油2cos2coscos222CAB4coscoscos222ABC∴2cos2cos2cos4sinsinsinCBACBA4.证明:要证1cabcba,只要证2221aacbbcabbcacc,即222abcab而∵0120,AB∴060C2222220cos,2cos602abcCabcababab∴原式成立.5.证明:∵223coscos222CAbac∴1cos1cos3sinsinsin222CABAC即sinsincossinsincos3sinAACCCAB∴sinsinsin()3sinACACB即sinsin2sinACB,∴2acb
本文标题:新课程基础训练题必修5第一章解三角形综合训练B组及答案
链接地址:https://www.777doc.com/doc-2397742 .html