您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 现代概率论习题(2011修订)-encryption
《现代概率论基础(第二版)》汪嘉冈编著习题参考答案sysy.edu.cn/guo目录第一章可测空间1第二章测度与积分29第三章独立随机变量序列65第四章条件期望与鞅67isysy.edu.cn/guosysy.edu.cn/guo第一章可测空间习题1.1若{An,n≥1}为单调集合序列,证明limnAn存在,且limnAn=∪∞n=1An,An递增∩∞n=1An,An递减证明(1)若An递增,则limnAn=∞∩k=1∞∪n=kAn=∞∩k=1∞∪n=1An=∞∪n=1An;limnAn=∞∪k=1∞∩n=kAn=∞∪k=1Ak=∞∪n=1An.故limnAn=limnAn=∪∞n=1An,即limnAn存在且limnAn=∪∞n=1An.(2)若An递减,则limnAn=∞∩k=1∞∪n=kAn=∞∩k=1Ak=∞∩n=1An;limnAn=∞∪k=1∞∩n=kAn=∞∪k=1∞∩n=1An=∞∩n=1An.故limnAn=limnAn=∩∞n=1An,即limnAn存在且limnAn=∩∞n=1An.习题1.2若Ω为实直线,An=(−∞,an),n≥1.试问limnAn和limnAn是什么集合?解由集合的上下极限的定义,有limnAn=∞∩k=1∞∪n=kAn=∞∩k=1∞∪n=k(−∞,an)=∞∩k=1(−∞,supn≥kan)=(−∞,infk≥1supn≥kan)=(−∞,limnan);limnAn=∞∪k=1∞∩n=kAn=∞∪k=1∞∩n=k(−∞,an)=∞∪k=1(−∞,infn≥kan)=(−∞,supk≥1infn≥kan)=(−∞,limnan).1sysy.edu.cn/guo2《现代概率论基础(第二版)》习题1.3若{An,n≥1}为互不相交的集合序列,证明limn→∞∪∞j=nAj=∅.证明由于{∞∪j=nAj,n≥1}是递减序列,根据习题1.1的结论可知limn→∞∪∞j=nAj存在且limn→∞∪∞j=nAj=∞∩n=1∞∪j=nAj.而∞∩n=1∞∪j=nAj={ω:∀n≥1,∃j(ω)n,使得ω∈Aj(!)}.假设∞∩n=1∞∪j=nAj̸=∅,则存在ω0∈∞∩n=1∞∪j=nAj,即对∀n≥1,∃j(ω0)n,使得ω0∈Aj(!0).取n1,n2≥1,存在jk(ω0)nk,使得ω0∈Ajk(!0),k=1,2,即ω0∈Aj1(!0)∩Aj2(!0).这与{An,n≥1}为互不相交的集合序列矛盾.因此,limn→∞∞∪j=nAj=∅.习题1.4证明:(1)(limnAn)c=limnAcn;(2)limn(An∪Bn)=limnAn∪limnBn;(3)limn(AnBn)=(limnAn)(limnBn);(4)limnAnlimnBn⊂limn(AnBn)⊂limnAnlimnBn.证明(1)由集合的运算法则,有(limnAn)c=(∞∪k=1∞∩n=kAn)c=∞∩k=1(∞∩n=kAn)c=∞∩k=1∞∪n=kAcn=limnAcn.(2)由集合的运算法则,有limn(An∪Bn)=∞∩k=1∞∪n=k(An∪Bn)=∞∩k=1[(∞∪n=kAn)∪(∞∪n=kBn)]=(∞∩k=1∞∪n=kAn)∪(∞∩k=1∞∪n=kBn)=limnAn∪limnBn.(3)由集合的运算法则,有limn(AnBn)=∞∪k=1∞∩n=k(AnBn)=∞∪k=1[(∞∩n=kAn)∩(∞∪n=kBn)]=(∞∪k=1∞∩n=kAn)∩(∞∪k=1∞∩n=kBn)=(limnAn)(limnBn).(4)若ω∈limnAnlimnBn,则ω∈limnAn且ω∈limnBn,即∃k∈N,使得当n≥k时,有ω∈An,且ω∈Bn对无限个n成立.从而ω∈AnBn对无限个n成立.故ω∈limn(AnBn),那么limnAnlimnBn⊂limn(AnBn).sysy.edu.cn/guoCHAPTER1.可测空间3若ω∈limn(AnBn),则ω∈(AnBn对无限个n成立.故ω∈An对无限个n成立;且ω∈Bn对无限个n成立.即ω∈limnAn且ω∈limnBn,故ω∈limnAnlimnBn,因此limn(AnBn)⊂limnAnlimnBn.综上所述,limnAnlimnBn⊂limn(AnBn)⊂limnAnlimnBn.习题1.5证明:(1)A△B=Ac△Bc,C=A△B⇐⇒A=B△C;(2)(A△B)△C=A△(B△C);(3)若A∪N1=B∪N2,则A△B⊂N1∪N2;若A△N1=B△N2,则A△B=N1△N2⊂N1∪N2;(4)(∪nAn)△(∪nBn)⊂∪n(An△Bn);(∩nAn)△(∩nBn)⊂∪n(An△Bn).证明(1)由集合的运算法则,有Ac△Bc=(Ac∪Bc)\(Ac∩Bc)=(Ac∪Bc)∩(Ac∩Bc)c=(Ac∪Bc)∩(A∪B)=(A∩B)c∩(A∪B)=((A∪B)\(A∩B)=Ac△Bc.若C=A△B,则C=(A\B)∪(B\A),B△C=(B\C)∪(C\B),而B\C=B\(A\B)∪(B\A)=B\(B\A)=B\(B∩Ac)=B∩(B∩Ac)c=B∩(A∪Bc)=A∩BC\B=[(A\B)∪(B\A)]\B=[(A\B)\B]∪[(B\A\B]=(A\B)∪∅=A\B=A\(A∩B)故B△C=(B\C)∪(C\B)=(A∩B)∪[A\(A∩B)]=A.若A=B△C,根据上面的证明,A,C的任意性以及A△B=B△A可知C=A△B.sysy.edu.cn/guo4《现代概率论基础(第二版)》从而,C=A△B⇐⇒A=B△C.(2)因为A△(B△C)=A△[(B\C)∪(C\B)]=A△[(B∩Cc)∪(C∩Bc)]={A\[(B∩Cc)∪(C∩Bc)]}∪{[(B∩Cc)∪(C∩Bc)]\A}={A∩[(B∩Cc)∪(C∩Bc)]c}∪{[(B∩Cc)∪(C∩Bc)]∩Ac}={A∩[(C∩Bc)∪(B∩Cc)]}∪{[(B∩Ac∩Cc)∪(C∩Bc∩Ac)]}={A∩{[(C∩Bc)∩Cc]∪[(C∩Bc)∩B]}}∪{[(B∩Ac∩Cc)∪(C∩Bc∩Ac)]}={A∩[(Bc∩Cc)∪(B∩C)]}∪[(B∩Ac∩Cc)∪(C∩Bc∩Ac)]=[(A∩Bc∩Cc)∪(A∩B∩C)]∪[(B∩Ac∩Cc)∪(C∩Bc∩Ac)]=(A∩Bc∩Cc)∪(A∩B∩C)∪(B∩Ac∩Cc)∪(C∩Bc∩Ac)利用同样的方法,我们易得(A△B)△C=(A∩Bc∩Cc)∪(A∩B∩C)∪(B∩Ac∩Cc)∪(C∩Bc∩Ac),所以(A△B)△C=A△(B△C).(3)对于∀ω∈A△B=A\B+B\A,若ω∈A\B,则ω∈A∪N1=B∪N2,而ω不属于B,故ω∈N2.同理,若ω∈B\A,则ω∈N1.因此,ω∈N1∪N2,即A△B⊂N1∪N2.因为A△N1=B△N2,所以A△(A△N1)=A△(B△N2),即(A△A)△N1=(A△B)△N2,∅△N1=(A△B)△N2.故N1=(A△B)△N2.因此,N1△N2=[(A△B)△N2]△N2=(A△B)△(N2△N2)=(A△B)△∅=A△B.又因为N1△N2=(N1∪N2)\(N1∩N2)⊂N1∪N2,从而A△B=N1△N2⊂N1∪N2.sysy.edu.cn/guoCHAPTER1.可测空间5(4)因为(∪nAn)△(∪nBn)=[(∪nAn)\(∪nBn)]∪[(∪nBn)\(∪nAn)]=[(∪nAn)∩(∪nBn)c]∪[(∪nBn)∩(∪nAn)c]=[(∪nAn)∩(∩nBcn)]∪[(∪nBn)∩(∩nAcn)]注意到∩nBcn⊂Bcn0,∩nAcn⊂Acn0,对∀n0∈N成立,故(∪nAn)∩(∩nBcn)⊂(∪nAn)∩Bcn0=∪n(An∩Bcn0)=∪n(An\Bn0),(∪nBn)∩(∩nAcn)⊂(∪nBn)∩Acn0=∪n(Bn∩Acn0)=∪n(Bn\An0),对∀n0∈N成立,所以(∪nAn)△(∪nBn)=[(∪nAn)∩(∩nBcn)]∪[(∪nBn)∩(∩nAcn)]⊂[∪n(An\Bn)]∪[∪n(Bn\An)]=∪n[(An\Bn)∪(Bn\An)]即(∪nAn)△(∪nBn)⊂∪n(An△Bn).此外,(∩nAn)△(∩nBn)=[(∩nAn)\(∩nBn)]∪[(∩nBn)\(∩nAn)]=[(∩nAn)∩(∩nBn)c]∪[(∩nBn)∩(∩nAn)c]=[(∩nAn)∩(∪nBcn)]∪[(∩nBn)∩(∪nAcn)]注意到∩nBn⊂Bn0,∩nAn⊂An0,对∀n0∈N成立,故(∩nAn)∩(∪nBcn)⊂(∪nBcn)∩An0=∪n(An0∩Bcn)=∪n(An0\Bn),(∩nBn)∩(∪nAcn)⊂(∪nAcn)∩Bn0=∪n(Bn0∩Acn)=∪n(Bn0\An),对∀n0∈N成立,所以(∩nAn)△(∩nBn)=[(∩nAn)∩(∪nBcn)]∪[(∩nBn)∩(∪nAcn)]sysy.edu.cn/guo6《现代概率论基础(第二版)》⊂[∪n(An\Bn)]∪[∪n(Bn\An)]=∪n[(An\Bn)∪(Bn\An)]即(∩nAn)△(∩nBn)⊂∪n(An△Bn).习题1.6对任何集合序列{An,n≥1},令B1=A1,Bn+1=Bn△An+1,n≥1.证明:此时limnBn存在当且仅当limnAn=∅.证明=⇒)若limnBn存在,则limnBn=limnBn.因为Bn+1=Bn△An+1,n≥1,由习题1.5(1)知,An+1=Bn△Bn+1,n≥1.令B0=∅,有A1=B0△B1=∅△B1=B1,故An=Bn−1△Bn,n≥1,且集合序列{Bn,n≥0},{Bn,n≥1}有相同的极限点集,即limnBn−1=limnBn.若limn(Bn−1△Bn)=limnBn−1△limnBn,(1.1)则有limnAn=limn(Bn−1△Bn)=∅.往证(1.1)式.事实上,由习题1.4(2),limn(Bn−1△Bn)=limn[(Bn−1\Bn)∪(Bn\Bn−1)]=(limn(Bn−1\Bn))∪(limn(Bn\Bn−1)),(limn(Bn−1\Bn))∪limnBn=limn(Bn−1∪Bn),(limn(Bn\Bn−1))∪limnBn−1=limn(Bn∪Bn−1),以及习题1.5(3)知limnBn−1△limnBn⊂limn(Bn−1△Bn).反过来,limnBn−1△limnBn=(limnBn−1\limnBn)∪(limnBn−1\limnBn),limn(Bn−1△Bn)=∩k≥1∪n≥k(Bn−1△Bn)=∩k≥1∪n≥k(Bn−1∩Bcn)=(∩k≥1∪n≥kBn−1)∩(∩k≥1∪n≥kBcn)=limnBn−1∩(limnBn)c=limnBn−1\limnBn=limnBn−1\limnBn⊂limnBn−1△limnBn.sysy.edu.cn/guoCHAPTER1.可测空间7从而,limn(Bn−1△Bn)⊂limnBn−1△limnBn.因此,limn(Bn−1△Bn)=limnBn−1△limnBn.⇐=)若limnAn=∅,则limnAn=limnAn=limnAn=∅.因为Bn+1=Bn△An+1=(Bn∪An+1)\(Bn∩An+1)=(Bn∪An+1)∩(Bcn∪Acn+1),n≥1.令B0=∅,则B1=B0△A1=(B0∪A1)∩(Bc0∪Ac1),于是Bn=(Bn−1∪An)∩(Bcn−1∪Acn),n≥1.所以,limnBn=limn[(Bn−1∪An)∩(Bcn−1∪Acn)]=limn(Bn−1∪An)limn(Bcn−1∪Acn).注意到limn(Bcn−1∪Acn)=[limn(Bn−1∩An)]c⊃(limnBn−1limnAn)c=∅c=Ω,因此,limnBn=limn(Bn−1∪An).又因为Bn+1=Bn△An+1=(Bn\An+1)∪(Bn\An
本文标题:现代概率论习题(2011修订)-encryption
链接地址:https://www.777doc.com/doc-2399672 .html