您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 人教版七年级上册第四单元几何练习及答案
第1页(共14页)一.解答题(共17小题)1.如图,已知点A、O、B在一条直线上,∠COD=90°,OE平分∠AOC,OF平分∠BOD,求∠EOF的度数.2.如图,已知在△ABC中,AB=AC.(1)试用直尺和圆规在AC上找一点D,使AD=BD(不写作法,但需保留作图痕迹).(2)在(1)中,连接BD,若BD=BC,求∠A的度数.3.如图,O是直线AB上一点,OC是一条射线,OD平分∠AOC,∠BOC=70°(1)画出∠BOC的平分线OE;(2)求∠COD和∠DOE的度数.4.如图,已知直线AB和CD相交于O点,∠COE是直角,OF平分∠AOE,∠COF=34°,求∠BOD的度数.5.如图,∠AOB=110°,∠COD=70°,OA平分∠EOC,OB平分∠DOF,求∠EOF的大小.第2页(共14页)6.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE的度数.7.如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠AOC和∠COB的度数.8.如图,OE为∠AOD的平分线,∠COD=∠EOC,∠COD=15°,求:①∠EOC的大小;②∠AOD的大小.9.如图,OC平分∠BOD,∠AOD=110°,∠COD=35°,求∠AOB的度数.第3页(共14页)10.如图,O为直线AB上一点,∠AOC=58°,OD平分∠AOC,∠DOE=90°.(1)求出∠BOD的度数;(2)请通过计算说明:OE是否平分∠BOC.11.如图,已知直线AB和CD相交于点O,∠COE是直角,OF平分∠AOE.(1)写出∠AOC与∠BOD的大小关系:,判断的依据是;(2)若∠COF=35°,求∠BOD的度数.12.如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠AOC=40°,求∠COD的度数.13.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.第4页(共14页)(1)如图1,当∠AOB=90°,∠BOC=60°时,∠MON的度数是多少?为什么?(2)如图2,当∠AOB=70°,∠BOC=60°时,∠MON=(直接写出结果).(3)如图3,当∠AOB=α,∠BOC=β时,猜想:∠MON=(直接写出结果).14.如图,已知∠AOC=∠BOD=75°,∠BOC=30°,求∠AOD.15.如图,∠AOB=120°,∠COD=20°,OE平分∠AOC,OF平分∠BOD,求∠EOF的度数.16.如图,已知∠AOB是直角,∠BOC=60°,OE平分∠AOC,OF平分∠BOC.(1)求∠EOF的度数;(2)若将条件“∠AOB是直角,∠BOC=60°”改为:∠AOB=x°,∠EOF=y°,其它条件不变.①则请用x的代数式来表示y;②如果∠AOB+∠EOF=156°.则∠EOF是多少度?17.如图,直线AB,CD相交于点O,OA平分∠EOC.(1)若∠EOC=70°,求∠BOD的度数;(2)若∠EOC:∠EOD=2:3,求∠BOD的度数.第5页(共14页)第6页(共14页)2016年12月21日105899的初中数学组卷参考答案与试题解析一.解答题(共17小题)1.(2011秋•新洲区期末)如图,已知点A、O、B在一条直线上,∠COD=90°,OE平分∠AOC,OF平分∠BOD,求∠EOF的度数.【解答】解:∵点A、O、B在一条直线上,即∠AOB=180°,∠COD=90°,∴∠AOC+∠BOD=∠AOB﹣∠COD=180°﹣90°=90°∵OE平分∠AOC,OF平分∠BOD,∴∠COE=∠AOC,∠DOF=∠BOD,∴∠COE+∠DOF=(∠AOC+∠BOD)=45°,∴∠EOF=∠COD+(∠COE+∠DOF)=90°+45°=135°.故答案为135°.2.(2016•大悟县二模)如图,已知在△ABC中,AB=AC.(1)试用直尺和圆规在AC上找一点D,使AD=BD(不写作法,但需保留作图痕迹).(2)在(1)中,连接BD,若BD=BC,求∠A的度数.【解答】解:(1)如图所示:(2)设∠A=x,∵AD=BD,∴∠DBA=∠A=x,在△ABD中∠BDC=∠A+∠DBA=2x,又∵BD=BC,∴∠C=∠BDC=2x,又∵AB=AC,∴∠ABC=∠C=2x,在△ABC中∠A+∠ABC+∠C=180°,第7页(共14页)∴x+2x+2x=180°,∴x=36°.3.(2016春•大庆校级期末)如图,O是直线AB上一点,OC是一条射线,OD平分∠AOC,∠BOC=70°(1)画出∠BOC的平分线OE;(2)求∠COD和∠DOE的度数.【解答】解:(1);(2)∵∠BOC=70°,OE平分∠BOC,∴∠AOC=180°﹣∠BOC=110°,∠COE=∠COB=35°,∵OD平分∠AOC,∴∠COD=∠AOC=55°,∴∠DOE=∠COD+∠COE=90°.4.(2015秋•深圳校级期末)如图,已知直线AB和CD相交于O点,∠COE是直角,OF平分∠AOE,∠COF=34°,求∠BOD的度数.【解答】解:∵∠COE是直角,∠COF=34°∴∠EOF=90°﹣34°=56°又∵OF平分∠AOE∴∠AOF=∠EOF=56°∵∠COF=34°第8页(共14页)∴∠AOC=56°﹣34°=22°则∠BOD=∠AOC=22°.故答案为22°.5.(2015秋•永登县期末)如图,∠AOB=110°,∠COD=70°,OA平分∠EOC,OB平分∠DOF,求∠EOF的大小.【解答】解:∵∠AOB=110°,∠COD=70°∴∠AOC+∠BOD=∠AOB﹣∠COD=40°∵OA平分∠EOC,OB平分∠DOF∴∠AOE=∠AOC,∠BOF=∠BOD∴∠AOE+∠BOF=40°∴∠EOF=∠AOB+∠AOE+∠BOF=150°.故答案为:150°.6.(2015秋•黄冈校级期末)如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE的度数.【解答】解:∵∠AOB=90°,OC平分∠AOB∴∠BOC=∠AOB=45°(3分)∵∠BOD=∠COD﹣∠BOC=90°﹣45°=45°∠BOD=3∠DOE(6分)∴∠DOE=15°(8分)∴∠COE=∠COD﹣∠DOE=90°﹣15°=75°(10分)故答案为75°.7.(2015秋•阜阳期末)如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠AOC和∠COB的度数.第9页(共14页)【解答】解:∵OE平分∠AOB,OF平分∠BOC,∴∠BOE=∠AOB=×90°=45°,∠COF=∠BOF=∠BOC,∵∠BOF=∠EOF﹣∠BOE=60°﹣45°=15°,∴∠BOC=2∠BOF=30°;∠AOC=∠BOC+∠AOB=30°+90°=120°.8.(2015秋•东莞市期末)如图,OE为∠AOD的平分线,∠COD=∠EOC,∠COD=15°,求:①∠EOC的大小;②∠AOD的大小.【解答】解:①由∠COD=∠EOC,得∠EOC=4∠COD=4×15°=60°;②由角的和差,得∠EOD=∠EOC﹣∠COD=60°﹣15°=45°.由角平分线的性质,得∠AOD=2∠EOD=2×45°=90°.9.(2015秋•岑溪市期末)如图,OC平分∠BOD,∠AOD=110°,∠COD=35°,求∠AOB的度数.【解答】解:∵OC平分∠BOD,∠COD=35°,∴∠BOD=2∠COD=70°,又∵∠AOD=110°,∴∠AOB=∠AOD﹣∠BOD=40°.故答案为:40°.第10页(共14页)10.(2015秋•牡丹区期末)如图,O为直线AB上一点,∠AOC=58°,OD平分∠AOC,∠DOE=90°.(1)求出∠BOD的度数;(2)请通过计算说明:OE是否平分∠BOC.【解答】解:(1)∵∠AOC=58°,OD平分∠AOC,∴∠AOD=29°,∴∠BOD=180°﹣29°=151°;(2)OE是∠BOC的平分线.理由如下:∵∠AOC=58°,∴∠BOC=122°.∵OD平分∠AOC,∴∠DOC=×58°=29°.∵∠DOE=90°,∴∠COE=90°﹣29°=61°,∴∠COE=∠BOC,即OE是∠BOC的平分线.11.(2015秋•沛县期末)如图,已知直线AB和CD相交于点O,∠COE是直角,OF平分∠AOE.(1)写出∠AOC与∠BOD的大小关系:相等,判断的依据是对顶角相等;(2)若∠COF=35°,求∠BOD的度数.【解答】解:(1)相等,对顶角相等;(2)∵∠COE是直角,∠COF=35°∴∠EOF=55°又OF平分∠AOE,∴∠AOE=110°第11页(共14页)∴∠AOC=20°∴∠BOD=∠AOC=20°.故答案为相等、对顶角相等、20°.12.(2015秋•莒南县期末)如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠AOC=40°,求∠COD的度数.【解答】解:∵∠BOC=2∠AOC,∠AOC=40°,∴∠BOC=2×40°=80°,∴∠AOB=∠BOC+∠AOC=80°+40°=120°,∵OD平分∠AOB,∴∠AOD=∠AOB=×120°=60°,∴∠COD=∠AOD﹣∠AOC=60°﹣40°=20°.13.(2015秋•南雄市期末)如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图1,当∠AOB=90°,∠BOC=60°时,∠MON的度数是多少?为什么?(2)如图2,当∠AOB=70°,∠BOC=60°时,∠MON=35°(直接写出结果).(3)如图3,当∠AOB=α,∠BOC=β时,猜想:∠MON=α(直接写出结果).【解答】解:(1)如图1,∵∠AOB=90°,∠BOC=60°,∴∠AOC=90°+60°=150°,∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=∠AOC=75°,∠NOC=∠BOC=30°∴∠MON=∠MOC﹣∠NOC=45°.(2)如图2,∵∠AOB=70°,∠BOC=60°,∴∠AOC=70°+60°=130°,第12页(共14页)∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=∠AOC=65°,∠NOC=∠BOC=30°∴∠MON=∠MOC﹣∠NOC=65°﹣30°=35°.故答案为:35°.(3)如图3,∠MON=α,与β的大小无关.理由:∵∠AOB=α,∠BOC=β,∴∠AOC=α+β.∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠MOC=∠AOC=(α+β),∠NOC=∠BOC=β,∴∠AON=∠AOC﹣∠NOC=α+β﹣β=α+β.∴∠MON=∠MOC﹣∠NOC=(α+β)﹣β=α即∠MON=α.故答案为:α.14.(2015秋•张掖校级月考)如图,已知∠AOC=∠BOD=75°,∠BOC=30°,求∠AOD.【解答】解:∵∠AOC=75°,∠BOC=30°,∴∠AOB=∠AOC﹣∠BOC=75°﹣30°=45°,又∵∠BOD=75°,∴∠AOD=∠AOB+∠BOD=45°+75°=120°.故答案为120°.15.(2015秋•河东区期末)如图,∠AOB=120°,∠COD=20°,OE平分∠AOC,OF平分∠BOD,求∠EOF的度数.第13页(共14页)【解答】解:∵∠AOB=120°,∠COD=20°∴∠AOC+∠BOD=∠AOB﹣∠COD=120°﹣20°=100°又∵OE平分∠AOC,OF平分∠BOD∴∠EOC+∠DOF=∠AOC+∠BOD=(AOC+∠BOD)=×100°=50°∴∠EOF=∠EOC+∠DOF+∠COD=50°+20°=70°16.(2015秋•文安县期末)如图,已知∠AOB是直角,∠BOC=60°,OE平分∠AOC,OF平分∠BOC.(1)求∠EOF的度数;(2)若将条件“∠AOB是直角,∠BOC=60°”改为:∠AOB=x°,∠EOF=y°,其它条件不变.①则请用x的代数式来表示y;②如果∠AOB+∠EOF=156°.则∠EOF是多少度?【解答】解:(1)∵∠AOB是直角,∠BOC=60°,OE
本文标题:人教版七年级上册第四单元几何练习及答案
链接地址:https://www.777doc.com/doc-2403552 .html