您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 冶金工业 > 函数的单调性教案课程(优秀)
《函数的单调性》教案第1页共4页课题:函数的单调性授课教师:王青【教学目标】1.知识与技能:使学生从形与数两方面理解函数的单调性概念,初步掌握利用函数图象和单调性定义判断、证明函数的单调性的方法,了解函数单调区间的概念。2.过程与方法:通过对函数单调性定义的探究,渗透数形结合的数学思想方法,培养学生的观察、归纳、抽象思维能力。3.情感态度与价值观:在参与的过程中体验成功的喜悦,感受学习数学的乐趣。【教学重点】函数单调性的概念、判断及证明.【教学难点】归纳抽象函数单调性的定义以及根据定义证明函数的单调性.【教学方法】教师启发讲授,学生探究学习.【使用教具】多媒体教学【教学过程】一、创设情境,引入课题1、下图是北京市今年8月8日一天24小时内气温随时间变化的曲线图.引导学生识图,捕捉信息,启发学生思考.问题:(1)当天的最高温度、最低温度以及何时达到;(3)哪些时段温度升高?哪些时段温度降低?在生活中,我们关心很多数据的变化规律,了解这些数据的变化规律,对我们的生活是很有帮助的.归纳:用函数观点看,其实就是随着自变量的变化,函数值是变大还是变小.〖设计意图〗由生活情境引入新课,激发兴趣.《函数的单调性》教案第2页共4页二、归纳探索,形成概念对于自变量变化时,函数值是变大还是变小,初中同学们就有了一定的认识,但是没有严格的定义,今天我们的任务首先就是系统地学习这块内容.1.借助图象,直观感知问题1:分别作出函数1xy,1xy,2)(xxf的图象,并且思考(1)函数1xy的图象从左至右是上升还是下降,在区间_____上)(xf的值随x的增大而_______(2)函数1xy的图象从左至右是上升还是下降,在区间_____上)(xf的值随x的增大而_______(3)函数2)(xxf在区间_____上,)(xf的值随x的增大而增大(4)函数2)(xxf在区间_____上,)(xf的值随x的增大而减小〖设计意图〗从图象直观感知函数单调性,完成对函数单调性的第一次认识.2.抽象思维,形成概念问题:你能用数学符号语言描述第(3)(4)题吗?任取2121),,0[,xxxx且,因为0))((21212221xxxxxx,即2221xx,所以21xfxf任意的x1,x2(0-,),x1x2,则21xfxf任意的x1,x2(0-,),x1x2,则21xfxf师生共同探究,得出增函数和减函数的定义:增函数定义:如果函数y=f(x)在数集I上满足:随着自变量x的增大,因变量y也增大,那么称y=f(x)在数集I上单调增,也称y=f(x)在数集I上是增函数数学语言描述:如果函数y=f(x)在数集I上满足:对于任意的x1,x2∈I,当x1x2时,f(x1)f(x2),则称y=f(x)在数集I上单调增,也称y=f(x)在数集I上是增函数。同学们根据增函数的定义给出减函数的定义〖设计意图〗把对单调性的认识由感性上升到理性认识的高度,完成对概念的第二次认识.事实上也给出了证明单调性的方法,为证明单调性做好铺垫.《函数的单调性》教案第3页共4页判断题:①若函数上为增函数,在区间则函数满足]32[)(),3()2()(xfffxf.通过判断题,强调三点:通过判断题,强调三点:①单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性.②对于某个具体函数的单调区间,可以是整个定义域(如一次函数),可以是定义域内某个区间(如二次函数),也可以根本不单调(如常函数).③函数的单调性就是函数的增减性〖设计意图〗让学生由特殊到一般,从具体到抽象归纳出单调性的定义,通过对判断题的辨析,加深学生对定义的理解,完成对概念的第三次认识.有了函数的单调性这一概念就有如下概念:①如果函数xfy在某区间上是增函数,就称该区间为函数xfy的单调增区间。②如果函数xfy在某区间上是减函数,就称该区间为函数xfy的单调减区间。练一练下图为函数()fx的图像,找出它的单调区间以及在每个区间上()fx是增函数还是减函数。三、掌握证法,适当延展例1、证明函数27xxf在R上是增函数.《函数的单调性》教案第4页共4页1.分析解决问题针对学生可能出现的问题,组织学生讨论、交流.证明:任取,设元求差变形断号∴,0)()(21xfxf即),()(21xfxf定论∴函数xxxf2)(在),2(上是增函数.2.归纳解题步骤引导学生归纳证明函数单调性的步骤:设元、作差、变形、断号、定论.练习:证明函数xf1x在),0[上是增函数.四、归纳小结,提高认识学生交流在本节课学习中的体会、收获,交流学习过程中的体验和感受,师生合作共同完成小结.1.小结(1)函数单调性的定义(2)证明函数单调性的步骤:设元、作差、变形、断号、定论.2.作业书面作业:《学习指导用书》P53-P542121,,xxRxx且)27()27()()(2121xxxfxf)(721xx,21xx021xx
本文标题:函数的单调性教案课程(优秀)
链接地址:https://www.777doc.com/doc-2405437 .html