您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 新颖高效率开关电源控制器设计方案
1引言降压型集成开关电源控制器广泛应用于各类便携式设备中。近年来,随着电池供电的便携式设备,如手机、MP3播放器、PDA等性能的提高和功能的日趋丰富,对于开关电源的效率提出了越来越高的要求。为提高效率和减少片外元器件,目前应用的Buck变换器通常集成了功率开关和同步整流开关。同时,为减小片外电感元件的尺寸以适应便携式设备的应用,开关频率往往设置为几兆甚至更高的数量级。由此带来的问题是,当变换器工作在轻载条件下,开关损耗就变成了主要的功率损耗。而便携式设备恰恰常工作于待机状态即轻载工作状态下,轻载效率对于延长电池的使用寿命至关重要。因此,提高轻载效率的问题受到了高度关注。解决上述问题的一种常见方法是在轻载情况下降低开关频率,从而使得变换器的效率保持在与重载近似的水平上。这种技术有PFM/PWM多模式调制、共栅驱动等,但是它们有一个共同的缺点:开关频率随负载调制,这使片外滤波器的设计变得相当复杂。本文提出的绿色模式降压型功率集成开关电源控制器芯片采用了Burst/PWM多模式调制技术,控制变换器在重载下以恒定频率工作在PWM模式,而当负载降低到一定程度时,自动切换到Burst模式并以降低的恒定频率工作。其主要优点是减少了开关损耗,又不增加片外滤波器的设计复杂度。此外,Burst模式还可以根据应用的需要,由用户控制使能或禁止。并且在模式转换过程中,采用双基准法实现模式转换的平滑过渡和负载迟滞。同时,芯片引入片上电流检测技术以取代传统的电阻电流检测,在一定程度上减少了功耗。功率开关和同步整流开关的集成也简化了片外应用电路的设计。2系统设计本文提出的绿色模式降压型开关电源控制器是一个恒定频率工作、峰值电流控制模式的Buck变换器,输出电压经由片外分压电阻反馈调节,功率开关和同步整流开关均由片上集成。系统原理如图1所示。2.1峰值电流PWM控制模式DC2DC变换器的控制策略主要有电压型控制和电流型控制两种。与电压型控制相比,电流型控制策略因具有较好的线性调整率和较为简单的补偿电路等优点而被广泛采用。作者提出的绿色模式Buck变换器在重载条件下工作时,采用峰值电流PWM控制策略。通常,根据电感电流检测方法的不同,电流型控制又可分为平均电流控制、峰值电流控制、模拟电流控制等不同模式,其中峰值电流控制模式因对输入电压和输出负载变化的瞬态响应快、具有瞬时峰值电流限流功能等优点,应用最为广泛。峰值电流控制环路主要由电流环和电压环构成。控制环路的工作过程由图2所示。图中:Vsense=Vin-KIsense(1)式中Vin是输入电源电压;Vsense是电流检测模块检测到的电压信号;Isense是检测模块检测到的与电感电流成比例的信号。另外,图2中的Vpeak信号即为受电压环控制的预期要达到的与电感电流峰值相对应的电压信号。在每个周期开始时,由时钟上升沿置位主RS触发器,功率开关打开,变换器进入充电阶段,电感电流上升,Isense上升而Vsense下降。当电感电流达到峰值,即Vsense达到Vpeak时,电流比较器(Icomp)的输出复位RS触发器控制功率开关关断。这就是电流环的工作过程。而电感电流的峰值主要由电压环控制。具体地说,当反馈电压下降到基准以下时,误差放大器(EA)输出上升,限制电流上升峰值的Vpeak电压随之下降,于是功率开关的开启占空比增大,输出电压上升,反之亦然。其中反馈电压是由输出电压经过电阻分压得到的。在功率开关关断的时间间隔内,传统的降压型Buck变换器采用肖特基二极管作为续流二极管。因此,当肖特基二极管导通时,它的导通压降(典型值013V)引起的功率损耗将是不可避免的。为了减少导通损耗,引入了同步整流技术。同步整流即采用一个同步功率开关代替整流二极管。当同步整流开关导通时,导通电阻一般在100mΩ以下,以1A负载为例,此时的导通损耗近似为011W;而对于导通电压为013V的肖特基二极管,损耗近似为013W.可见在中小功率的应用当中,同步整流可以有效地提高开关电源变换器的效率。由于同步整流开关和肖特基二极管之间工作方式的差异,需同时引入一些控制电路和保护电路。首先,在功率开关和同步整流开关两个开关转换的瞬间,必须设置一个死区时间(anti2shoot2thru)来防止两个开关同时导通导致输入电源短路。在死区时间内,功率开关和同步整流开关都关断,此时电流由同步整流开关上寄生的二极管续流,所以在合理范围内死区时间越短就越能减少功耗,一般设计在10ns左右(1MHz工作频率下)。其次,同步整流开关不像肖特基二极管那样只能单向导电,当变换器工作在断续电流模式下,在下一个周期开始之前,同步整流开关上的电流就已经下降到零并反向,此时,电感电流反向相当于从负载抽电流,导致能量的浪费以及变换器效率的降低。因此必须设计一个防止同步整流开关电流反向的检测电路(reverse)来检测电流方向。本设计是利用检测SW点的电压,当电压从负变正时,反向电流比较器控制同步整流开关关断。2.2Burst控制模式在轻载情况下,这个多模式开关电源控制器还可以控制变换器工作在Burst模式。在这种模式下,功率开关根据负载情况连续工作几个周期再关断几个周期,因此可以有效地减少开关损耗和降低静态功耗。对于便携式设备应用来说,轻载情况下的变换器效率是一项非常重要的指标,因此Burst控制模式必不可少。Burst模式的工作过程如图3所示。当变换器工作在Burst模式时,电感电流峰值的最小值被控制在150mA左右,不再随着负载的降低而降低,即Vpeak信号不再受误差放大器输出控制。Burst模式工作状态和休眠状态(sleepmode)的切换主要由一个Burst比较器控制。该比较器是一个典型的迟滞比较器,它的迟滞窗口直接决定了在Burst工作模式下输出电压的纹波大小。输出电压的波动反馈到Burst比较器,当反馈电压超过比较器上限时,Burst比较器输出会强制功率开关关断几个周期,进入休眠状态;反之,当反馈电压低于比较器下限时,Burst比较器的输出允许功率开关按正常方式工作。因此,在工作情况下,功率开关的开关频率依然是恒定的,而且,在负载恒定的情况下,休眠状态和工作状态的交替过程也是按恒定频率进行的。每个Burst工作过程视负载变化而定:在非常轻的负载下只持续几个周期,而在重载情况下可能持续多个周期或者保持连续工作。在Burst工作周期之间的休眠阶段,功率开关和其他一些不必要的电路都被关断,从而进一步减小静态功耗,此时的负载电流完全由输出电容供给。2.3模式转换在多模式控制的变换器中,由于在轻重载条件下采用不同的控制策略,会在负载变化和模式切换的时候产生一些问题:一是当负载电流正好在所设定的模式切换点附近波动时,会使变换器在两种工作模式间反复切换,极容易造成工作状态不稳定;二是在模式切换的瞬间会产生较大的过冲电压,导致器件损坏。这是多模式变换器普遍存在的一个严重缺陷。针对这一缺陷,本文提出一种双基准解决方案,即对PWM模式和Burst模式采用不同的基准电压,这样不但可以实现如前所述的模式切换过程中的迟滞功能,且可抑制一部分过冲电压。模式切换时的工作原理如图4所示。在Burst工作模式中,控制器控制输出电压略高于PWM工作模式中的输出电压,设计中,Burst下限高于EA基准的016%,上限高于EA基准
本文标题:新颖高效率开关电源控制器设计方案
链接地址:https://www.777doc.com/doc-2406982 .html