您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 无机及分析化学答案(第二版)第二章
稀疏信号处理简介“Signal&informationprocessingis···anArt”—PetreStoica成都电子科技大学电子工程学院万群2020/1/12一所大学,两个战场科学:一个是和其他世界一流大学共同面对的国际学术前沿战场技术:另一个是为我们国家经济、社会、国防、发展战略需要服务的战场UESTC2020/1/13内容从几个问题开始稀疏重建理论几个例子阵列信号处理的例子实孔径超分辨、阵列稀疏布阵无线定位的例子MDS、MC信道估计的例子2020/1/14一、从几个问题开始高斯分布凭什么无所不在?MMSE是最优的?吝啬原则:免费的午餐?分辨率受孔径限制?机器学习:支持向量是稀疏的?什么是多维标度问题?2020/1/15高斯分布:AnequationisforeternityThefundamentalnatureofthisdistributionanditsmainpropertieswerederivedbyLaplace(1781)whenGausswassixyearsoldThedistributionitselfhadbeenfoundbydeMoivre(1733)beforeLaplacewasborn2020/1/16Gauss’sQuestion(1809)Whatwouldbeadistributiondensityf(x;θ)forwhichthemaximumlikelihoodestimateofθisthesamplemeanweusethemodernterminologyadoptedbythescientificcommunitymorethanacenturylater(themethodofmaximumlikelihoodwasproposedbyFisherin1921)2020/1/17DERIVATIONOFGAUSS(1809)Usingi.i.d.observations,themaximumlikelihoodestimateofparameteroflocation2020/1/18Derivationanyrealnumbercanbearbitrarilyaccuratelyapproximatedbyrationalnumbers2020/1/19ResultGaussassumedthesamplemeanduetoitscomputationalconvenienceandderivedtheGaussianlaw.ThislineofreasoningisquitetheoppositetothemodernexpositionintextbooksonstatisticsandsignalprocessingwheretheLSmethodisderivedfromtheassumedGaussianity.2020/1/110为什么要折衷?性能最优计算最简单跑题了?2020/1/1111.1高斯分布凭什么无所不在?TheroleofGaussianmodelsinsignalprocessingisbasedontheoptimalpropertyoftheGaussiandistributionminimizingFisherinformationovertheclassofdistributionswithaboundedvariance.Thecentrallimittheorem(CLT)isnotonlyauniquereasonbutperhapsitisevennotthemainreason.2020/1/112Fisherinformation2020/1/1131.2MMSE是最优的?Ifhisknowntobesparse,canwedoevenbetterthantheMMSEestimate?Andifso,howmuchbettercanwedo?有偏估计!2020/1/114NP-Hard?现代最小二乘(P0)0minxsubjectto2bAx(P1)1minxsubjectto2bAx2020/1/1151.3吝啬原则:免费的午餐?多成分混合(合成,正问题)分离各个成分(感知,反问题)1()Mkkkxa2()()Hsax2020/1/116贪婪的谱估计=滤波:2()()Hswx211121121121111/22()()()()()1()()()()()()()()()()()()1()()()()()MHCBFkkkMVDRHMHkkkHPPvARHHHPPPHnnnMUSICHHHnnkkPwasaqRawsaRaaqqqawsaqqaaqUUawsaUUaaq1M2020/1/1171.4分辨率受孔径限制?DFTOOOOOOOO=OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOX2020/1/118BWE2020/1/1191GHz(S)+1GHz(X)=10GHz?Lband1to2GHzSband2to4GHzCband4to8GHzXband8to12GHzKuband12to18GHz2020/1/120超分辨是一个欠定问题在线测量+先验模型稀疏2020/1/1211.5机器学习:支持向量是稀疏的?thetrainingsamplehyperplanethatdoestheseparation-2020/1/122primalformulationoftheproblem2020/1/123convexquadraticprogrammingproblem2020/1/124dualformulation2020/1/125GreatwatershedinoptimizationItisnotbetweenlinearityandnonlinearity,butconvexityandnon-convexity—R.Rockafellar,SIAMReview1993220xaybxycxdye2020/1/1261.6什么是多维标度问题?测距定位2020/1/127倒行逆施:解的表示计算最简单性能最优2020/1/128子空间分析2020/1/129矩阵完整性分析Rank=2,3节点之间无测量节点之间测量误差很大计算最简单性能最优所需测量不多!2020/1/130He-WenWei,RongPeng,QunWan,Zhang-XinChen,andShang-FuYe,MultidimensionalScalingAnalysisforPassiveMovingTargetLocalizationwithTDOAandFDOAMeasurements,IEEETransactionsonSignalProcessing,vol.58,no.3,pp.1677-1688,2010S.Qin,Q.Wan,Z.X.Chen,AFastMultidimensionalScalingAnalysisforMobilePositioning,IETSignalProcessing.Zhang-XinChen,He-WenWei,QunWan,Shang-FuYeandWan-LinYang,ASupplementtoMultidimensionalScalingFrameworkforMobileLocation:AUnifiedView,IEEETransactionsonSignalProcessing,vol.57,no.5,pp.2230-2234,May2009HewenWei,QunWan,ShangfuYe,ANovelWeightedMultidimensionalScalingAnalysisforTime-of-Arrival-BasedMobileLocation,IEEETransactionsonSignalProcessing,Vol.56,No.7,July2008,pp.3018-3022HewenWei,QunWan,ShangfuYe,Multidimensionalscalingbasedpassiveemitterlocalizationfromrange-differencemeasurements,IETSignalProcessing,Volume2,Issue4,December2008Page(s):415-423Zhang-XinChen,QunWan,He-WenWeiandWan-LinYang,ANovelSubspaceApproachforHyperbolicMobileLocation,ChineseJournalofElectronics,2009年第3期,pp.569-573HuangJiYan,WanQun,Commentson‘TheCramer-RaoBoundsofHybridTOA/RSSandTDOA/RSSLocationEstimationSchemes’,IEEEComm.Letters,Vol.11,Issue11,Nov.2007,pp.848-8492020/1/131二、稀疏重建理论基追踪:BasisPursuit,贪婪算法稀疏重建条件:RIP字典确定型随机型结构+随机型计算最简单性能最优所需测量最少2020/1/1322020/1/133CVX:convexoptimizationMarch3,2008,mcgrant@stanford.edul1_lslarge-scalel1-regularizedleast-squaresl1_logreglarge-scalel1-regularizedlogisticregressionGGPLABgeometricprogrammingL1-MAGICconvexoptimizationtoCompressedSensingSparseLabsparsesolutionstolinearequations,particularlyunderdeterminedsystemsCurrentsoftware2020/1/1342020/1/1352020/1/1362020/1/1372020/1/1382020/1/139三、几个例子阵列信号处理的例子实孔径超分辨阵列稀疏布阵无线定位的例子MDSMC信道估计的例子SVR2020/1/140稀疏布阵:同阵元数,优化5.7dB00.8751.8752.753.754.6255.6256.57.58.3759.37510.2513.125-101x(wavelength)yOurarraycompare_ieee_trans_sp_1988_vol.36_no.3_pp372-80-60-40-20020406080-30-25-20-15-10-50Direction(degree)NormalizedpatternMaximumsidelobelevelis-19.01dB2020/1/141稀疏信道估计r=Sh+ecvx_beginvariablesh;minimize(norm(S*h-r,2)+0.5*norm(h,1));cvx_end1ms10kbps:101Gbps:100万2020/1/14200.050.10.150.20.250.30102030405060708090100EstimationerrorofnonzeroentriesCumulativedensityfunction(%)LSOM
本文标题:无机及分析化学答案(第二版)第二章
链接地址:https://www.777doc.com/doc-2409978 .html