您好,欢迎访问三七文档
当前位置:首页 > 财经/贸易 > 资产评估/会计 > 应用数值分析(第四版)课后习题答案第5章
1第五章习题解答1、给出数据点:013419156iixy(1)用012,,xxx构造二次Lagrange插值多项式2()Lx,并计算15.x的近似值215(.)L。(2)用123,,xxx构造二次Newton插值多项式2()Nx,并计算15.x的近似值215(.)N。(3)用事后误差估计方法估计215(.)L、215(.)N的误差。解:(1)利用012013,,xxx,0121915,,yyy作Lagrange插值函数2202130301191501031013303152933()()()()()()()()()()()()()()iiixxxxxxLxlxyxx代入可得2151175(.).L。(2)利用123134,,xxx,1239156,,yyy构造如下差商表:ixiy一阶差商二阶差商19315346-9-4于是可得Newton插值多项式:229314134196()()()()()Nxxxxxx代入可得215135(.).N。(3)用事后误差估计的方法可得误差为1501511751350656304.(.)(..).R◆2、设Lagrange插值基函数是0012()(,,,,)njijijjixxlxinxx试证明:①对x,有01()niilx2②00110001211()()(,,,)()()nkiiinnklxknxxxkn其中01,,,nxxx为互异的插值节点。证明:①由Lagrange插值多项式的误差表达式101()()()()()!nniifRxxxn知,对于函数1()fx进行插值,其误差为0,亦即0()()niiifxlxf精确成立,亦即01()niilx。②分别取被插值函数()kfxx,当kn时Lagrange插值多项式的误差表达式1001()()()()()!nniifRxxxn,即0()()niiifxlxf,亦即0()nkkiiilxxx,对于0k,由①可知结论成立;对于12,,,kn时,特别地取0x,则有000()nkiiilx;而当1kn时知其Lagrange插值误差为1001()()()()()()!nnniiiifRxxxxxn,于是有0()()()niiifxlxfRx,即1100()()nnkkiiiiixlxxxx,特别取0x可得1201010011()()()nknniinnilxxxxxxx,证毕。◆3、试验证Newton插值多项式满足22()()nNxfx。解:由Newton插值多项式0010012()()[,]()[,,]nNxfxfxxxxfxxx101010()()[,,,]()nniixxxxfxxxxx可知20012001220211021102110020202110202()()[,]()[,,]()()()()()()()()()()()()()()nNxfxfxxxxfxxxxxxxfxfxfxfxfxfxxxxxfxxxxxxxxxxxfx◆34、已知0101()()()()(,,,nifxxxxxxxxin互异,),求函数()fx的p阶差商01[,,,],pfxxxpn。解:由差商和函数值的关系式0100,()[,,,]()pjppjjiiijfxfxxxxx可知,当pn时总有010[,,,]pfxxx◆5、若()()()fxuxvx,试证明:01001011[,]()[,][,]()fxxuxvxxuxxvx证明:由差商定义10110001101011010100101010101010001011()()()()()()[,]()()()()()()()()()()()()()()()[,][,]()fxfxuxvxuxvxfxxxxxxuxvxuxvxuxvxuxvxxxuxuxvxvxvxuxxxxxuxvxxuxxvx◆6、若已知2nny,求4ny和4ny。解:由向前差分、中心差分和函数值的关系可得44440432143211464242624222()***kknnkknnnnnnnnnnnyCyyyyyy444202112211221464242624222()***kknnkknnnnnnnnnnnyCyyyyyy7、考虑构造一个函数01()([,])xfxex的等距节点函数表,要使分段线性插值的误差不大于41102,最大步长h应取多大?解:由等距分段线性插值的误差表达式4222401110882()()max()xhhRxfxe从而可得221000121.he8、考虑构造一个函数01()([,])xfxex的等距节点函数表,要使分段Hermite插值的误差不大于41102,最大步长h应取多大?解:由等距分段Hermite插值的误差表达式4444401110423842()()max()!xhhRxfxe从而可得141221002899.he9、对函数()fx,取节点012,,xxx,且已知001122''(),(),()fxyfxyfxy;①试对()fx构造二次插值多项式2001122'()()()()Pxhxyhxyhxy确定上式中基函数012(),(),()hxhxhx。②若要使2()Px存在且唯一,插值节点012,,xxx应满足什么条件?解:①依题意,二次多项式基函数012(),(),()hxhxhx应分别满足:000010200'(),(),()hxyhxhx(1)101111200''(),(),()hxhxyhx(2)202122200'(),(),()hxhxhxy(3)由(1)(2)(3)可得212000210222()()()()()xxxxxyhxxxxxx,02111022'()()()()xxxxyhxxxx,5010022012022()()()()()xxxxxyhxxxxxx②由(1)(2)(3)可知欲使2()Px存在且唯一,只需且必须插值节点02,xx互异且0212xxx。10、设301()[,],,[,]fxCabxxab,证明:1010100210012012102'()()()()()()()()()()()()()xxxxxxxxxfxfxfxxxxxxxfxRxxx其中2010116'''()()()()()Rxxxxxfxx。证明:令二次多项式10101200210012012102'()()()()()()()()()()()()xxxxxxxxxPxfxfxxxxxxxfxxx则易见2()Px满足:200200211''()(),()(),()()PxfxPxfxPxfx于是2()()()RxfxPx满足:0010'()()()RxRxRx因而201()()()()RxKxxxxx,引入辅助函数201()()()()()gtRtKxtxtx,则()gt共有01(,xxx二重),四个零点,依广义Rolle定理,存在01[,]xx满足:26660'''''''''''''''()()()()()()()()gRKxfPKxfKx从而6'''()()fKx,20116'''()()()()Rxxxxxf。证毕。11、设(),()iihxhx为Hermite插值基函数,012(,,,,)in,试证明:①01()niihx②0(()())niiiihxxhxx6证明:由Hermite插值00'()()()()nniiiiiifxhxyhxyRx,其误差表达式222022()()()()()!nniifRxxxn,故对于次数不高于一次的多项式函数()fx有0()Rx,从而00'()()()nniiiiiifxhxyhxy,特别地取1(),fxx,分别可得①01()niihx;②0(()())niiiihxxhxx12、试构造一个Hermite三次多项式3()Hx逼近函数()fx,满足以下条件。3333000111003110''''()(),()()()(),()()HfHfHfHf解:取0101,xx,由Hermite插值1100'()()()()iiiiiifxhxyhxyRx,11300'()()()iiiiiiHxhxyhxy,其中22001122111001()()()xxhxxx,2211012320110()()xxhxxx,22010101()()()xhxxxx,22101110()()()xhxxxx代入可得323103593()()()Hxhxhxxxx。13、试判断下面函数是否为三次样条函数:①33301001112[,)()[,)()[,]xfxxxxxx7②23211022101[,)()[,]xxxfxxxx解:据三次样条函数的定义①中函数是三次样条函数,②中函数不是三次样条函数,因其在内节点0处二阶导数不连续。14、给出如下的数据:1010132020'''xyyy①试用重节点差商法构造五次Hermite插值多项式5()Hx满足所给条件,并给出插值误差式。②若用Lagrange型基本函数法,应如何构造节点基函数。解:①利用重节点构造如下差商表ixiy一阶差商二阶差商三阶差商四阶差商五阶差商-10-10-2-10-2100113-7010-1-4313223/211/4-1/8于是可得2332355432121101713118121131788()()()()()()()Hxxxxxxxxxxxx插值误差为:6235116()()()()()!fRxxxx②若用Lagrange型基本函数法,设基函数为012010(),(),(),(),(),()xxxxxx,2150000'''()()()()iijjijHxxyxyxy其中001201()(,,),()(,),()ijxixjx均为五次多项式且满足00000001101011''''()()()()(),(),811111111101001''''()()()()(),(),22222210101011''''()()()()(),(),00000010101011''''()()()()(),(),11111110111001''''()()()()(),(),00000010110011''''()()()()(),()。15、已知数据对081720319456(,){(,),(,),(,),(,),(,)}xy①给出自然边界条件040''''()()yy
本文标题:应用数值分析(第四版)课后习题答案第5章
链接地址:https://www.777doc.com/doc-2420300 .html