您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 积化和差与和差化积同步练习(教师版)
3.3三角函数的积化和差与和差化积同步练习1.下列等式错误的是()A.sin(A+B)+sin(A-B)=2sinAcosBB.sin(A+B)-sin(A-B)=2cosAsinBC.cos(A+B)+cos(A-B)=2cosAcosBD.cos(A+B)-cos(A-B)=2sinAcosB解析:选D.由两角和与差的正、余弦公式展开左边可知A、B、C正确.2.sin15°sin75°=()A.18B.14C.12D.1解析:选B.sin15°sin75°=-12[cos(15°+75°)-cos(15°-75°)]=-12(cos90°-cos60°)=-12(0-12)=14.3.sin105°+sin15°等于()A.32B.22C.62D.64解析:选C.sin105°+sin15°=2sin105°+15°2cos105°-15°2=2sin60°cos45°=62.4.sin37.5°cos7.5°=________.解析:sin37.5°cos7.5°=12[sin(37.5°+7.5°)+sin(37.5°-7.5°)]=12(sin45°+sin30°)=1222+12=2+14.答案:2+14一、选择题1.sin70°cos20°-sin10°sin50°的值为()A.34B.32C.12D.34解析:选A.sin70°cos20°-sin10°sin50°=12(sin90°+sin50°)+12(cos60°-cos40°)=12+12sin50°+14-12cos40°=34.2.cos72°-cos36°的值为()A.3-23B.12C.-12D.3+23解析:选C.原式=-2sin72°+36°2sin72°-36°2=-2sin54°·sin18°=-2cos36°cos72°=-2·sin36°cos36°cos72°sin36°=-sin72°cos72°sin36°=-sin144°2sin36°=-12,故选C.3.在△ABC中,若sinAsinB=cos2C2,则△ABC是()A.等边三角形B.等腰三角形C.不等边三角形D.直角三角形解析:选B.由已知等式得12[cos(A-B)-cos(A+B)]=12(1+cosC),又A+B=π-C.所以cos(A-B)-cos(π-C)=1+cosC.所以cos(A-B)=1,又-πA-Bπ,所以A-B=0,所以A=B,故△ABC为等腰三角形.故选B.4.函数y=sinx-π6cosx的最大值为()A.12B.14C.1D.22解析:选B.y=sinx-π6cosx=12sinx-π6+x+sinx-π6-x=12sin2x-π6-12=12sin2x-π6-14.∴ymax=12-14=14.5.若cos(α+β)cos(α-β)=13,则cos2α-sin2β等于()A.-23B.-13C.13D.23解析:选C.cos(α+β)cos(α-β)=12(cos2α+cos2β)=12[(2cos2α-1)+(1-2sin2β)]=cos2α-sin2β,∴cos2α-sin2β=13.6.函数y=sinx+π3-sinx(x∈[0,π2])的值域是()A.[-2,2]B.-12,32C.12,1D.12,32解析:选B.y=sinx+π3-sinx=2cosx+π6sinπ6=cos(x+π6).∵x∈0,π2,∴π6≤x+π6≤2π3,∴y∈-12,32.二、填空题7.cos275°+cos215°+cos75°·cos15°的值等于________.解析:y=sin215°+cos215°+cos75°·cos15°=1+12(cos90°+cos60°)=54.答案:548.已知α-β=2π3,且cosα+cosβ=13,则cos(α+β)等于________.解析:cosα+cosβ=2cosα+β2cosα-β2=2cosπ3cosα+β2=cosα+β2=13,∴cos(α+β)=2cos2α+β2-1=2×19-1=-79.答案:-799.函数y=cosx+π3cosx+2π3的最大值是______.解析:y=12cos2x+π+cos-π3=12-cos2x+cosπ3=14-12cos2x,因为-1≤cos2x≤1,所以ymax=34.答案:34三、解答题10.化简下列各式:(1)cosA+cos120°+B+cos120°-BsinB+sin120°+A-sin120°-A;(2)sinA+2sin3A+sin5Asin3A+2sin5A+sin7A.解:(1)原式=cosA+2cos120°cosBsinB+2cos120°sinA=cosA-cosBsinB-sinA=2sinA+B2sinB-A22cosA+B2sinB-A2=tanA+B2.(2)原式=sinA+sin5A+2sin3Asin3A+sin7A+2sin5A=2sin3Acos2A+2sin3A2sin5Acos2A+2sin5A=2sin3Acos2A+12sin5Acos2A+1=sin3Asin5A.11.在△ABC中,若B=30°,求cosAsinC的取值范围.解:由题意得cosAsinC=12[sin(A+C)-sin(A-C)]=12[sin(π-B)-sin(A-C)]=14-12sin(A-C).∵-1≤sin(A-C)≤1,∴-14≤14-12sin(A-C)≤34,∴cosAsinC的取值范围是-14,34.12.已知f(x)=-12+sin52x2sinx2,x∈(0,π).(1)将f(x)表示成cosx的多项式;(2)求f(x)的最小值.解:(1)f(x)=sin5x2-sinx22sinx2=2cos3x2sinx2sinx2=2cos3x2cosx2=cos2x+cosx=2cos2x+cosx-1.(2)∵f(x)=2(cosx+14)2-98,且-1<cosx<1.∴当cosx=-14时,f(x)取最小值-98.
本文标题:积化和差与和差化积同步练习(教师版)
链接地址:https://www.777doc.com/doc-2420900 .html